under nitrogen atmosphere. The mixture was cooled to room temperature
and distilled water (20 mL) was added to quench the reaction. The mixture
was then extracted with dichloromethane, and the combined organic
solvent was dried over anhydrous sodium sulfate and removed under
reduced pressure. The residue was purified by column chromatography
using dichloromethane as the eluent to give a deep-red solid (2.71 g).
[1] a) N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006,
103, 15729; b) S. Chu, A. Majumdar, Nature 2012, 488, 294;
c) Y.-L. He, Y. Qiu, K. Wang, F. Yuan, W.-Q. Wang, M.-J. Li, J.-Q. Guo,
Energy 2020, 198, 117373.
[2] a) S. U. Khan, M. Al-Shahry, W. B. Ingler, Jr., Science 2002, 297,
2243; b) X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin,
J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76;
c) S. Linic, P. Christopher, D. B. Ingram, Nat. Mater. 2011, 10, 911.
[3] a) A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc.
2009, 131, 6050; b) Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li,
C. Ray, L. Yu, Adv. Mater. 2010, 22, E135; c) M. Jeong, I. W. Choi,
E. M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H. W. Choi,
J. Lee, J. H. Bae, S. K. Kwak, D. S. Kim, C. Yang, Science 2020, 369,
1615.
[4] a) C. Chen, Y. Kuang, L. Hu, Joule 2019, 3, 683; b) Z. Zheng, H. Li,
X. Zhang, H. Jiang, X. Geng, S. Li, H. Tu, X. Cheng, P. Yang, Y. Wan,
Nano Energy 2020, 68, 104298; c) G. Liu, T. Chen, J. Xu, G. Li,
K. Wang, J. Mater. Chem. A 2020, 8, 513.
[5] N. L. Panwar, S. C. Kaushik, S. Kothari, Renewable Sustainable
Energy Rev. 2011, 15, 1513.
[6] Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang,
J. Lin, X. Xie, M. Jiang, Adv. Funct. Mater. 2013, 23, 5444.
[7] S. Chu, Y. Cui, N. Liu, Nat. Mater. 2016, 16, 16.
[8] C. P. Grey, J. M. Tarascon, Nat. Mater. 2016, 16, 45.
[9] S. E. Hosseini, M. A. Wahid, Renewable Sustainable Energy Rev.
2016, 57, 850.
[10] J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic,
T. F. Jaramillo, J. K. Norskov, Nat. Mater. 2016, 16, 70.
[11] X. Li, J. Li, J. Lu, N. Xu, C. Chen, X. Min, B. Zhu, H. Li, L. Zhou,
S. Zhu, T. Zhang, J. Zhu, Joule 2018, 2, 1331.
1
Yield: 50%. H NMR (500 MHz, DMSO-d6) δ 7.86 (d, J = 8.7 Hz, 2H),
7.40 (t, J = 7.6 Hz, 8H), 7.29 (t, J = 7.4 Hz, 4H), 7.20 (d, J = 7.8 Hz, 6H),
6.79–6.73 (m, 4H), 5.75 (s, 2H). ESI-MS [M]+ m/z: 543.18 (calcd: 542.64).
Synthesis
phenazine-8,13-dione (DDPA-PDN): A mixture of DDPA-PD (2.17 g,
mmol), 5,6-diamino-4a,9a-dihydroanthracene-9,10-dione (4.80 g,
of
2,17-Bis(diphenylamino)dibenzo[a,c]naphtho[2,3-h]
4
20 mmol) and acetic acid (30 mL) was stirred at 120 °C for 12 h under
nitrogen atmosphere. The mixture was cooled to room temperature and
poured into water (100 mL). After filtered, the filter cake was dissolved
in dichloromethane and dried over anhydrous sodium sulfate and
removed under reduced pressure. The residue was purified by column
chromatography using dichloromethane as the eluent to give a deep-red
1
solid (1.49 g). Yield: 50%. H NMR (400 MHz, Methylene Chloride-d2) δ
9.07 (d, J = 8.8 Hz, 1H), 8.93 (d, J = 8.9 Hz, 1H), 8.48 (d, J = 8.8 Hz, 1H),
8.38 (d, J = 8.8 Hz, 1H), 8.22 (td, J = 7.1, 1.7 Hz, 2H), 7.81–7.73 (m, 2H),
7.45 (d, J = 2.3 Hz, 2H), 7.33 (ddd, J = 8.8, 7.1, 1.6 Hz, 9H), 7.26 (dd, J =
8.9, 2.2 Hz, 1H), 7.22–7.16 (m, 12H). 13C NMR (101 MHz, Chloroform-d)
δ 183.88, 183.62, 151.01, 150.83, 146.64, 146.52, 145.21, 143.96, 142.79,
139.34, 135.38, 134.96, 134.74, 134.41, 134.14, 133.49, 133.33, 132.27, 129.67,
129.60, 129.39, 128.89, 128.70, 128.08, 127.27, 126.57, 125.90, 125.77,
125.57, 124.72, 124.54, 123.83, 122.73, 122.17, 121.30, 113.53. ESI-MS [M]+
m/z: 744.61 (calcd: 744.25). Anal. Calcd (%) for C52H32N4O2: C, 83.85; H,
4.33; N, 7.52; O, 4.30. Found: C, 84.42; H, 4.59; N, 7.46.
[12] Y. Shi, R. Li, L. Shi, E. Ahmed, Y. Jin, P. Wang, Adv. Sustainable Syst.
2018, 2, 1700145.
[13] M. Gao, L. Zhu, C. K. Peh, G. W. Ho, Energy Environ. Sci. 2019, 12,
841.
Supporting Information
Supporting Information is available from the Wiley Online Library or
from the author.
[14] H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci,
N. Miljkovic, G. Chen, Nat. Commun. 2014, 5, 4449.
[15] Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, M. Chen, Adv. Mater.
2015, 27, 4302.
[16] Y. Pang, J. Zhang, R. Ma, Z. Qu, E. Lee, T. Luo, ACS Energy Lett.
2020, 5, 437.
[17] P. Sun, W. Zhang, I. Zada, Y. Zhang, J. Gu, Q. Liu, H. Su,
D. Pantelic, B. Jelenkovic, D. Zhang, ACS Appl. Mater. Interfaces
2020, 12, 2171.
[18] a) P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, ACS Nano 2017, 11, 5087;
b) L. Cui, P. Zhang, Y. Xiao, Y. Liang, H. Liang, Z. Cheng, L. Qu, Adv.
Mater. 2018, 30, 1706805; c) L. Zhu, T. Ding, M. Gao, C. K. N. Peh,
G. W. Ho, Adv. Energy Mater. 2019, 9, 1900250.
Acknowledgements
Y.C. and J.L. contributed equally to this work. This work was supported
by the National Natural Science Foundation of China (51803069),
Heilongjiang Province Returnees Merit Subsidize Project (2017QD0052),
China Postdoctoral Science Foundation (2018M631892), and the Science
and Technology Research Project of the Education Department of Jilin
Province, China (JJKH20211043KJ).
Conflict of Interest
The authors declare no conflict of interest.
[19] a) X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang, S. Zhu, J. Zhu, Adv. Mater.
2017, 29, 1604031; b) G. Wang, Y. Fu, A. Guo, T. Mei, J. Wang, J. Li,
X. Wang, Chem. Mater. 2017, 29, 5629.
[20] a) Z. C. Xiong, Y. J. Zhu, D. D. Qin, F. F. Chen, R. L. Yang, Small
2018, 14, 1803387; b) L. Zhu, M. Gao, C. K. N. Peh, X. Wang,
G. W. Ho, Adv. Energy Mater. 2018, 8, 1702149; c) Y. Lu, T. Dai,
D. Fan, H. Min, S. Ding, X. Yang, Sci. Bull. 2020, 8, 2000567.
[21] a) C. Zhang, C. Yan, Z. Xue, W. Yu, Y. Xie, T. Wang, Small 2016, 12,
5320; b) L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu,
J. Zhu, Nat. Photonics 2016, 10, 393.
[22] R. Li, L. Zhang, L. Shi, P. Wang, ACS Nano 2017, 11, 3752.
[23] a) Q. Chen, Z. Pei, Y. Xu, Z. Li, Y. Yang, Y. Wei, Y. Ji, Chem. Sci. 2018,
9, 623; b) P. Mu, W. Bai, Z. Zhang, J. He, H. Sun, Z. Zhu, W. Liang,
A. Li, J. Mater. Chem. A 2018, 6, 18183.
Data Availability Statement
Research data are not shared.
Keywords
donor–acceptor structures, organic-small-molecule photothermal
materials, solar–thermal conversion, thermoelectric power generation,
water evaporation
[24] a) C. Li, D. Jiang, B. Huo, M. Ding, C. Huang, D. Jia, H. Li, C. Y. Liu,
J. Liu, Nano Energy 2019, 60, 841; b) X. Wang, Q. Liu, S. Wu, B. Xu,
H. Xu, Adv. Mater. 2019, 31, 1807716; c) X. Zhou, F. Zhao, Y. Guo,
B. Rosenberger, G. Yu, Sci. Adv. 2019, 5, eaaw5484.
Received: June 29, 2021
Revised: August 16, 2021
Published online:
Adv. Funct. Mater. 2021, 2106247
2106247 (9 of 10)
© 2021 Wiley-VCH GmbH