A R T I C L E S
Maisch et al.
of SAMs.7 So, for example, nanometer-sized gold clusters have
been deposited from a cluster beam onto thiol terminated
SAMs.7a,b The deposition of metal clusters on SAMs can,
however, also be performed by chemical reduction of metal
salts7c or by electrodeposition.8 The replacement of the STM
tip as counter electrode could be realized directly with gold-
SAM-metal junctions,9 prepared, for example, by evaporation
of titanium onto a 4-phenylthiophenolate-SAM,9b whereby the
area of contact is restricted to e30 nm diameter. The electrical
properties of these systems have not been reported. A further
metal-insulator-metal junction has been assembled by deposi-
tion of silver paint on top of a gold-octadecanethiol SAM
surface, showing that the SAM increased the resistance of the
device by 10 orders of magnitude compared to devices without
monolayer.10
The most important method for measuring rates of electron
transport across organic thin films has been established by
Whitesides et al. using Hg-SAM||SAM-metal junctions.11a-c
The current that flows across these junctions depends both
on the molecular structure and on the thickness of the SAMs.
The current density decreased with increasing distance between
the electrodes. From the experimental results, it was concluded
that the mechanism of electron transport is super exchange
tunneling. The absolute magnitude of the current density in these
junctions is in agreement with the results of Hg-SAM||SAM-
Hg junctions described by Majda et al.12 These junctions using
a SAM supported on the surface of a drop of mercury provide
an interesting test bed for screening the intrinsic electrical
properties of SAMs, but they probably cannot be developed into
practically useful microelectronic components. Besides the
difficulty in handling electronic devices containing liquid Hg
electrodes, these junctions show a relatively low electrical
breakdown voltage (BDV),11 a severe disadvantage for the
Chart 1
application of SAMs as insulators. The BDV is revealed by an
abrupt increase in current flowing across the junction in response
to increasing the applied potential. The BDV depends expectedly
on the thickness and the tilt angle of SAMs but also on the
type of the metals applied as electrodes (Au, Au/Hg, Cu, Hg,
Ag).11a Interestingly, a dependence of BDV on the chemical
structure of SAMs was not observed so far, SAMs composing
aliphatic or aromatic residues, respectively, do not differ in
BDV.11
The practically most simple method to prepare gold-SAM-
metal junctions appears to be undoubtedly the evaporative
deposition of metals onto gold-SAM surfaces. Penetration of
metal atoms and metal clusters, respectively, into the monolayer,
resulting in electrical short circuits, has probably prevented a
general application of this method.13 Penetration of metals into
SAMs might be hindered by SAMs with functionalized surfaces
(e.g., with COOH end groups), which are capable of reacting
with metals,13 or by decreasing the temperature during the
evaporation process.14 Interestingly, SAM forming molecules
with methyl side groups have fewer defects than SAMs of
comparable n-alkanethiols.13c
In the present publication, we report on the preparation and
the properties of gold-SAM-metal junctions with highly
ordered SAMs of ω-substituted alkanethiols such as 1 and 2
(Chart 1) where the ω-substituents are aromatic or heteroaro-
matic residues capable of giving strong π-electron interactions
(π-stacking).15 These junctions surprisingly show no electrical
short circuits in large-area and have a markedly increased
electrical breakdown voltage. They should therefore have
decisive advantages for various applications in electronic
devices. These stable systems should also enable to determine
the mechanism of electron transport through organic thin films
experimentally without any of the assumptions necessary for
other systems applied until now.11,12
(6) (a) Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.; Burgin, T.
P.; Jones II, L.; Allara, D. L.; Tour, J. M.; Weiss, P. S. Science 1996, 271,
1705-1707. (b) Cygan, M. T.; Dunbar, T. D.; Arnold, J. J.; Bumm, L. A.;
Shedlock, N. F.; Burgin, T. P.; Jones II, L.; Allara, D. L.; Tour, J. M.;
Weiss, P. S. J. Am. Chem. Soc. 1998, 120, 2721-2732. (c) Datta, S.; Tian,
W.; Hong, S.; Reifenberger, R.; Henderson, J. I.; Kubiak, C. P. Phys. ReV.
Lett. 1997, 79, 2530-2533. (d) Dhirani, A.; Lin, P.-H.; Guyot-Sionnest,
P.; Zehner, R. W.; Sita, L. R. J. Chem. Phys. 1997, 106, 5249-5253. (e)
Bumm, L. A.; Arnold, J. J.; Dunbar, T. D.; Allara, D. L.; Weiss, P. S. J.
Phys. Chem. B 1999, 103, 8122-8127. (f) Fan, Fu-R. F.; Yang, J.; Cai,
L.; Price, D. W., Jr.; Dirk, S. M.; Kosyukin, D. V.; Yao, Y.; Rawlett, A.
M.; Tour, J. M.; Bard, A. J. J. Am. Chem. Soc. 2002, 124, 5550-5560. (g)
James, D. K.; Tour, J. M. Chem. Mater. 2004, 16, 4423-4435. (h)
Wakamatsu, S.; Akiba, U.; Fujihira, M. Jpn. J. Appl. Phys. 2002, 41, 4998-
5002.
(7) (a) Dorogi, M.; Gomez, J.; Osifchin, R.; Andres, R. P.; Reifenberger, R.
Phys. ReV. 1995, B52, 9071-9077. (b) Andres, R. P.; Bein, T.; Dorogi,
M.; Feng, S.; Henderson, J. I.; Kubiak, C. P.; Mahoney, W.; Osifchin, R.
G.; Reifenberger, R. Science 1996, 272, 1323-1325. (c) Grummt, U.-W.;
Geissler, M.; Drechsler, T.; Fuchs, H.; Staub, R. Angew. Chem., Int. Ed.
Engl. 1998, 37, 3286-3289. (d) Beebe, J. M.; Eugelkes, V. B.; Miller, L.
L.; Frisbie, C. D. J. Am. Chem. Soc. 2002, 124, 11268-11269. (e) Engelkes,
B. V.; Beebe, J. M.; Frisbie, C. D. J. Am. Chem. Soc. 2004, 126, 14287-
14296.
(8) Cavalleri, O.; Bittner, A. M.; Kind, H.; Kern, K.; Greber, T. Z. Phys. Chem.
1999, 208, 107-136.
(9) (a) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science
1997, 278, 252-254. (b) Zhou, C.; Deshpande, M. R.; Reed, M. A.; Jones,
L., II; Tour, J. M. Appl. Phys. Lett. 1997, 71, 611-613.
(10) Baker, M. V.; Landau, J. Aust. J. Chem. 1995, 48, 1201-1211.
(11) (a) Haag, R.; Rampi, M. A.; Holmlin, R. E.; Whitesides, G. M. J. Am.
Chem. Soc. 1999, 121, 7895-7906. (b) Holmlin, R. E.; Haag, R.; Chabinyc,
M. L.; Ismagilov, R. F.; Cohen, A. E.; Terfort, A.; Rampi, M. A.;
Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 5075-5085. (c) Holmlin,
R. E.; Ismagilov, R. F.; Haag, R.; Mujica, V.; Ratner, M. A.; Rampi, M.
A.; Whitesides, G. M. Angew. Chem., Int. Ed. 2001, 40, 2316-2320.
(12) (a) Slowinski, K.; Chamberlain II, R. V.; Bilewicz, R.; Majda, M. J. Am.
Chem. Soc. 1996, 118, 4709-4710. (b) Slowinski, K.; Fong, H. K. Y.;
Majda, M. J. Am. Chem. Soc. 1999, 121, 7257-7261. (c) Slowinski, K.;
Chamberlain, R. V.; Miller, C. J.; Majda, M. J. Am. Chem. Soc. 1997,
119, 11910-11919.
Results and Discussion
Synthesis of the Thiols 2a-c. While the synthesis of the
thiols 1a,b has been published already,16a the phenoxy-
terminated thiols 2a-c were prepared as outlined in Scheme 1.
The known bromoalkenes 3a and 3b,c16b have been reacted
with potassium phenolate, prepared from potassium methanolate
(13) (a) Jung, D. R.; Czanderna, A. W. Crit. ReV. Solid State Mater. Sci. 1994,
19, 1-54. (b) Herdt, G. C.; King, D. E.; Czanderna, A. W. Z. Phys. Chem.
1997, 202, 163-196. (c) Braach-Maksvytis, V.; Raguse, B. J. Am. Chem.
Soc. 2000, 122, 9544-9545.
(14) Tarlov, M. J. Langmuir 1992, 8, 80-89.
(15) (a) Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. J. Am. Chem.
Soc. Perkin Trans 2001, 651-669 (b) Whitten, D. G.; Chen, L.; Geiger,
H. C.; Perlstein, J.; Song, X. J. Phys. Chem. B 1998, 10098-10110.
(16) (a) Buckel, F.; Persson, P.; Effenberger, F. Synthesis 1999, 953-958. (b)
Effenberger, F.; Heid, S. Synthesis 1995, 1126-1130. (c) Seifritz, S.
Dissertation, Universita¨t Stuttgart 2001. (d) Aggarwal, V. K.; Angelaud,
R.; Bihan, D.; Blackburn, P.; Fieldhouse, R.; Fonquerna, S. J.; Ford, G.
D.; Hynd, G.; Jones, E.; Jones, R. V. H.; Jubault, P.; Palmer, M. J.; Ratcliffe,
P. D.; Adams, H. J. Chem. Soc., Perkin Trans. 1 2001, 2604-2622.
9
17316 J. AM. CHEM. SOC. VOL. 127, NO. 49, 2005