Pignard et al.
hydrolysis when compared to the fully oxygenated analogue.8
In addition, the synthetic methodologies developed to construct
or introduce this functional group have pointed the finger at
the advantages brought by the sulfur atom: increased stability
of the reagents, higher yields in product, reproducibility, and
ease of purification when compared to the fully oxygenated
reagents and products.9 This positive role of sulfur was
highlighted in a successful synthesis of phosphonodifluoro-
methyl analogues of nucleoside-3′-phosphates.7d
Recently, we reported that O,O-dialkylphosphonodifluoro-
methyl radicals 5a generated from selanyl (or sulfanyl) precur-
sors 6a in the presence of a hydrogen donor add to variously
substituted alkenes through a chain-reaction process to deliver
the expected adducts in fair to good yields (Figure 2).10
Phosphonodifluoromethyl radicals have also been postulated as
intermediates in either metal- or oxone-mediated addition of
FIGURE 1. Structures of phosphate and various isosteres such as
phosphonates and phosphinates.
(3) (a) Blackburn, G. M.; Kent, D. E.; Kolkmann, F. J. Chem. Soc., Perkin
Trans. 1 1984, 1119-1125. (b) Blackburn, G. M.; Guo, M.-J.; Langston,
S. P.; Taylor, G. E. Tetrahedron Lett. 1990, 31, 5637-5640. (c) Blackburn,
G. M.; Langston, S. P. Tetrahedron Lett. 1991, 32, 6425-6428. (d) Burke,
T. R., Jr.; Smyth, M. S.; Nomizu, M.; Otaka, A.; Roller, P. P. J. Org. Chem.
1993, 58, 1336-1340. (e) Matulic-Adamic, J.; Usman, N. Tetrahedron Lett.
1994, 35, 3227-3230. (f) Martin, S. F.; Wong, Y.-L.; Wagman, A. S. J.
Org. Chem. 1994, 59, 4821-4831. (g) Berkowitz, D. B.; Shen, Q.; Maeng,
J.-H. Tetrahedron Lett. 1994, 35, 6445-6448. (h) Matulic-Adamic, J.;
Haeberli, P.; Usman, N. J. Org. Chem. 1995, 60, 2563-2569. (i) Levvy,
S. G.; Wasson, B.; Carson, D. A.; Cottam, H. B. Synthesis 1996, 843-
846. (j) Burke Jr., T. R.; Ye, B.; Akamatsu, M.; Ford, H., Jr.; Yan, X.;
Kole, H. K.; Wolf, G.; Shoelson, S. E.; Roller, P. P. J. Med. Chem. 1996,
39, 1021-1027. (k) Berkowitz, D. B.; Eggen, M.; Shen, Q.; Shoemaker,
R. K. J. Org. Chem. 1996, 61, 4666-4675. (l) Ye, B.; Burke, T. R., Jr.
Tetrahedron 1996, 52, 9963-9970. (m) Qabar, M. N.; Urban, J.; Khan,
M. Tetrahedron 1997, 53, 11171-11178. (n) Hamilton, C. J.; Roberts, S.
M.; Shipitsin, A. J. Chem. Soc., Chem. Commun. 1998, 1087-1088. (o)
Hamilton, C. J.; Roberts, S. M. J. Chem. Soc., Perkin Trans. 1 1999, 1051-
1056. (p) Yokomatsu, T.; Abe, H.; Yamagishi, T.; Suemune, K.; Shibuya,
S. J. Org. Chem. 1999, 64, 8413-8418. (q) Butt, A. H.; Percy, J. M.;
Spencer, N. S. Chem. Commun. 2000, 1691-1692. (r) Murano, T.;
Muroyama, S.; Yokomatsu, T.; Shibuya, S. Synlett 2002, 1657-1660. (s)
Burke Jr., T. R.; Lee, K. Acc. Chem. Res. 2003, 36, 426-433. (t)
Yokomatsu, T.; Kato, J.; Sakuma, C.; Shibuya, S. Synlett 2003, 1407-
1410. (u) Yokomatsu, T.; Kato, J.; Sakuma, C.; Shibuya, S. Synlett 2003,
1407-1410. (v) Murano, T.; Yuasa, Y.; Kobayakawa, H.; Yokomatsu, T.;
Shibuya, S. Tetrahedron 2003, 59, 10223-10230. (w) Gautier, A.; Garipova,
G.; Salcedo, C.; Balieu, S.; Piettre, S. Angew. Chem., Int. Ed. 2004, 43,
5963-5967.
FIGURE 2. Structures of radicals 5, their precursors 6, Lawesson
reagent 7, and side products 8 and 9.
either bromo- or iododifluoromethylphosphonates to alkenes and
alkynes, leading to 1:1 adducts.11
We now report an extension of our previous work and show
that addition onto alkynes leads to â,γ-unsaturated-R,R-difluo-
rophosphonates. Not surprisingly, the previously unreported
O,O-dialkylphosphonothiodifluoromethyl radicals 5b can be
generated from the corresponding thioanalogue 6b of precursor
6a: in the presence of alkenes or alkynes, the expected alkyl-
or vinyl-R,R-difluorophosphonothioates, respectively, are pro-
duced.
(8) By analogy, phosphorothioates are more stable than the corresponding
phosphates. See: (a) Eckstein, F. J. Am. Chem. Soc. 1970, 92, 4718-4723.
(b) Eckstein, F. Angew. Chem., Int. Ed. Engl. 1983, 22, 423-506. (c)
Eckstein, F. Annu. ReV. Biochem. 1985, 54, 367-402. (d) Matsukura M.;
Shinozuka, K.; Zon, G.; Mitsuya, H.; Reitz, M.; Cohen, J. S.; Broder, S.
Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 7706-7710. (e) Cooke, A. M.;
Noble, N. J.; Payne, S.; Gigg, R.; Potter, B. V. L. J. Chem. Soc., Chem.
Commun. 1989, 269-271. (f) Uhlmann, E.; Peyman, A. Chem. ReV. 1990,
90, 543-584. (g) Baker, G. R.; Billington, D. C.; Gani, D. Tetrahedron
1991, 47, 3895-3908. (h) Billington, D. C. The Inositol Phosphates; VCH
Weinheim: New York, 1993; p 69. (i) Szczepanik, M. B.; De´saubry, L.;
Johnson, R. A. Tetrahedron Lett. 1998, 39, 7455-7458. (j) Marwic, C. J.
Am. Med. Assoc. 1998, 280, 871. (k) Stix, G. Sci. Am. 1998, 297, 46-50.
(l) Cook, P. D. XIV International Roundtables: Nucleosides, Nucleotides
and Their Biological Applications, Sept. 10-14, 2000, San Francisco, No
34, p 31.
(9) See, for example, refs 7d and 7e. In addition and despite their
complete stability at room temperature, difluorinated phosphonothioates
more readily react with strong oxidants than the corresponding phosphonates,
thereby greatly facilitating the monitoring of both reactions and column
chomatography purifications by TLC.
(10) Lequeux, T.; Lebouc, F.; Lopin, C.; Yang, H.; Gouhier, G.; Piettre,
S. R. Org. Lett. 2001, 3, 185-188.
(4) (a) Chambers, R. D.; Jaouhari, R.; O’Hagan, D. Tetrahedron 1989,
45, 5101-5108. (b) Chambers, R. D.; O’Hagan, D.; Lamont, R. B.; Jain,
S. C. J. Chem. Soc., Chem. Commun. 1990, 1052-1054. (c) Nieschalk, J.;
Batsanov, A. S.; O’Hagan, D.; Howard, J. A. K. Tetrahedron 1996, 52,
165-176.
(5) Thatcher, G. R.; Campbell, A. S. J. Org. Chem. 1993, 58, 2272-
2281.
(6) (a) Smart, B. E. Organofluorine Chemistry: Principles and Com-
mercial Applications; Smart, B. E., Tatlow, J. C., Eds.; Plenum Press: New
York, 1994; p 58. (b) Howard, J. A. K.; Hoy, V. J.; O’Hagan, D.; Smith,
G. T. Tetrahedron 1996, 52, 12613-12622. (c) Burke, T. R.; Ye, B.; Yan,
X.; Wang, S.; Zia, Z.; Chen, L.; Zhang, Z. Y.; Barford, D. Biochemistry
1996, 35, 15989-15996. (d) Berkowitz, D. B.; Bose, M. J. Fluorine Chem.
2001, 112, 13-33. (e) Haufe, G.; Rosen, T. C.; Meyer, O. G. J.; Frohlich,
R.; Rissanen, K. J. Fluorine Chem. 2002, 114, 189-198. (f) Parsch, J.;
Engels, J. E. J. Am. Chem. Soc. 2002, 124, 5664-5672. (g) Kui, S. C. F.;
Zhu, N.; Chan, M. C. W. Angew. Chem., Int. Ed. 2003, 42, 1628-1632.
(h) Olsen, J. A.; Banner, D. W.; Seiler, P.; Sander, U. O.; d’Arcy, A.; Sthle,
M.; Muller, K.; Diederich, F. Angew. Chem., Int. Ed. 2003, 42, 2507-
2511. (i) Biffinger, J. C.; Kim, H. W.; DiMagno, S. G. ChemBioChem 2004,
5, 622-627.
(7) (a) Piettre, S. R.; Raboisson, P. Tetrahedron Lett. 1996, 37, 2229-
2232. (b) Piettre, S. R. Tetrahedron Lett. 1996, 37, 2233-2236. (c)
Yokomatsu, T.; Takechi, H.; Murano, T.; Shibuya, S. J. Org. Chem. 2000,
65, 5858-5861. (d) Lopin, C.; Gautier, A.; Gouhier, G.; Piettre, S. J. Am.
Chem. Soc. 2002, 124, 14668-14675. (e) Murano, T.; Yuasa, Y.; Mu-
royama, S.; Yokomatsu, T.; Shibuya, S. Tetrahedron 2003, 59, 9059-9073.
(11) (a) Yang, Z.-Y.; Burton, D. Tetrahedron Lett. 1991, 32, 1019-
1022. (b) Yang, Z.-Y.; Burton, D. J. J. Org. Chem. 1992, 57, 4676-4683.
(c) Hu, C.-M.; Chen, J. J. Chem. Soc., Perkin Trans. 1 1993, 327-330. (d)
Li, A.-R.; Chen, Q.-Y. Synthesis 1996, 606-608. (e) Yokomatsu, T.;
Suemune, K.; Murano, T.; Shibuya, S. J. Org. Chem. 1996, 61, 7207-
7211.
32 J. Org. Chem., Vol. 71, No. 1, 2006