116ꢀ
ꢀC. Liu et al.: Design and synthesis of heterocyclic enamine derivatives
167 (8), 153 (7), 126 (53), 99 (7), 58 (10), 55 (19), 43 (26); HRMS: Calcd (0.44 g, 1 mmol) in 10 mL of ethanol was treated with sodium boro-
for C22H14N5F3Cl2 m/z 337.0829, found m/z 337.0829.
hydride (0.06 g, 1.5 mmol), and the mixture was stirred for 6 h at room
temperature. The mixture was concentrated and the precipitate was
1-(2,6-Dichloro-4-(trifluoromethyl)phenyl)-5-(furan- collected, dried, and crystallized from ethanol to give pure product T6
2-ylmethylamino)-1H-pyrazole-3-carbonitrile (T5)ꢀA solution (yield 0.35 g, 80%), mp 229.1–229.6°C; IR (KBr): ν 3214, 2251, 1591, 1305,
1
of (E)-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-5-(furan-2-ylmethy- 1135 cm-1; H NMR (400 MHz, CDCl3): δ 3.88 (s, 1H, NH), 4.35 (d, J ꢂ=ꢂ 6
leneamino)-1H-pyrazole-3-carbonitrile (12) (0.40 g, 1 mmol) in 10 mL Hz, 2H, CH2), 5.88 (s, 1H, CH), 7.33 (d, J ꢂ=ꢂ 8 Hz, 1H, Pyridine-H), 7.60 (dd,
of ethanol was treated with sodium borohydride (0.06 g, 1.5 mmol), J1 ꢂ=ꢂ 2 Hz, J2 ꢂ=ꢂ 8 Hz, 1H, Pyridine-H), 7.79 (s, 2H, ArH), 8.34 (d, J ꢂ=ꢂ 2 Hz, 1H,
and the mixture was stirred for 6 h at room temperature. The mixture Pyridine-H); EIMS: 445 m/z [M]+ (43), 408 (4), 213 (9), 178 (2), 126 (100),
was concentrated and the precipitate was collected, dried, and crys- 90 (9), 72 (4), 63 (2); HRMS: Calcd for C22H14N5F3Cl2 m/z 444.9876, found
tallized from ethanol to give pure product T5 (yield 0.32 g, 82%), m/z 444.9870.
mp 151.7–152.4°C; IR (KBr): ν 3348, 2925, 2244, 1580, 1313, 1209, 882,
1
737 cm-1; H NMR (400 MHz, CDCl3): δ 3.78 (t, 1H, J ꢂ=ꢂ 3 Hz, CH), 4.29
Acknowledgments: We are thankful for financial support
(d, J ꢂ=ꢂ 6 Hz, 2H, CH2), 6.00 (s, 1H, CH), 6.26 (d, J ꢂ=ꢂ 3 Hz, 1H, CH), 6.34
from the Science Foundation of Shanghai Institute of
(d, J ꢂ=ꢂ 3 Hz, 1H, CH), 7.37 (s, 1H, NH), 7.78 (s, 2H, ArH); EIMS: m/z
Technology (YJ2010-49), the Key and Innovation Project of
Shanghai Educational Committee (No. 11ZZ180), and the
Project of Local University Ability Building of Shanghai
Scientific and Technological Committee (No. 11520502600).
400 [M]+ (9), 363 (5), 212 (5), 82 (6), 81 (100), 53 (7); HRMS: Calcd for
C22H14N5F3Cl2 m/z 400.0106, found m/z 400.0103.
5-((6-Chloropyridin-3-yl)methylamino)-1-(2,6-dichloro-4-
(trifluoromethyl)phenyl)-1H-pyrazole-3-carbonitrileꢀ(T6)ꢀA
solution of (E)-5-((6-chloropyridin-3-yl)methyleneamino)-1-(2,6-
dichloro-4-(trifluoromethyl)phenyl)-1H-pyrazole-3-carbonitrile (13) Received April 4, 2012; accepted May 13, 2012
References
Butera, J. A.; Antane, M. M.; Antane, S. A.; Argentieri, T. M.;
Freeden, C.; Graceffa, R. F.; Hirth, B.H.; Jenkins, D.; Lennox,
J. R.; Matelan, E. Design and SAR of novel potassium
channel openers targeted for urge urinary incontinence. 1.
N-cyanoguanidine bioisosteres possessing in vivo bladder
selectivity. J. Med. Chem. 2000, 43, 1187–1202.
Cheikh, A. B.; Chuche, J.; Manisse, N.; Pommelet, J. C.; Netsch, K.
P.; Lorencak, P.; Wentrup, C. Synthesis of α-cyano carbonyl
compounds by flash vacuum thermolysis of (alkylamino)
methylene derivatives of meldrum’s acid. Evidence for facile
1,3-shifts of alkylamino and alkylthio groups in imidoylketene
intermediates. J. Org. Chem. 1991, 56, 970–975.
Jepson, J. E. C.; Brown, L. A.; Sattelle, D. B. The actions of the
neonicotinoid imidacloprid on cholinergic neurons of
Drosophila melanogaster. Invert. Neurosci. 2006, 6, 33–40.
Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A. Overview of the
status and global strategy for noenicotinoids. J. Agric. Food
Chem. 2011, 59, 2897–2908.
Kagabu, S.; Moriya, K.; Shibuya, K.; Hattori, Y.; Tsuboi, S.;
Shiokawa, K. 1-(6-Halonicotinyl)-2-nitromethylene-imidaz
olidines as potential new insecticides. Biosci. Biotech.
Biochem. 1992, 56, 362–363.
and the relationship to partition coefficient and charge
density on the pharmacophore. J. Agric. Food Chem. 2007, 55,
812–818.
Moury, D. T. Mucochoric acid. II. Reactions of aldehyde group. J. Am
Chem. Soc. 1953, 75, 1909–1912.
Ohno, I.; Tomizawaa, M.; Durkin, K. A.; Casida, J. E.; Kagabu,
S. Bis-neonicotinoid insecticides: observed and predicted
binding interactions with the nicotinic receptor. Bioorg. Med.
Chem. Lett. 2009, 19, 3449–3452.
Samaritoni, J. G.; Demeter, D. A.; Gifford, J. M.; Watson, G.B.;
Kempe, M.S.; Bruce, T.J. Dihydropiperazine neonicotinoid
compounds. Synthesis and insecticidal activity. J. Agric. Food
Chem. 2003, 51, 3035–3042.
Shao, X. S.; Lee, P. W.; Liu, Z. W.; Xu, X. Y.; Li, Z.; Qian, X. H.
cis-Configuration: a new tactic/rationale for neonicotinoid
molecular design. J. Agric. Food Chem. 2011, 59, 2943–2949.
Wang, Y. L.; Cheng, J. G.; Qian, X. H.; Li, Z. Actions between neonic-
otinoids and key residues of insect nAChR based on an ab
initio quantum chemistry study: hydrogen bonding and π- π
interaction. Bioorg. Med. Chem. 2007, 15, 2624–2630.
Zhou, H. B.; Zhang, J.; Lu, S. M.; Xie, R. G.; Zhou, Z. Y.; Choi, M. C. K.;
Chan, A. S. C.; Yang, T. K. Design, synthesis and structure of new
chiral squaric acid monoaminoalcohols and diaminoalcohols
and their use as catalysts in asymmetric reduction of ketones
and diketones. Tetrahedron 2001, 57, 9325–9334.
Kagabu, S.; Ishihara, R.; Hieda, Y.; Nishimura, K.; Naruse, Y.
Insecticidal and neuroblocking potencies of variants of the
imidazolidine moiety of imidacloprid-related neonicotinoids