ORGANIC
LETTERS
2012
Vol. 14, No. 1
241–243
Polyisocyanides As a New Alignment
Medium To Measure Residual Dipolar
Couplings for Small Organic Molecules
Murali Dama and Stefan Berger*
Institute for Analytical Chemistry, University of Leipzig, Johannisallee 29, D-04103
Leipzig, Germany
Received November 9, 2011
ABSTRACT
Polyisocycanides were found to give anisotropic molecular alignment in the magnetic field and are useful to measure residual dipolar couplings
(RDCs) from analytes, e.g. strychnine. They show less quadrupolar splitting of the deuterated solvent signal compared with other liquid crystal
systems such as Poly-γ-benzyl-L-glutamate (PBLG) and hence less undesired line broadening.
Residual dipolar couplings (RDCs) are an important
parameter in organic structure determination.1a These
RDCs are useful in configuration, conformation and
constitutional analysis of molecules and support or even
replace NOE information due to their rÀ3 dependence.1b
RDCs can be observed by NMR when molecules are
anisotropically oriented in a solution. For high resolution
structure calculation the degree of anisotropy should be
small.2
Liquid crystals,3 bicelles,4 micelles,5À7 bacteria phages,8,9
and paramagnetic lanthanide tags10,11 have been devel-
oped as anisotropic media to enhance the magnetic
orientation of biomolecules, but these methods are not
well suited for small organic molecules due to the require-
ment of water as a solvent.
For water insoluble organic molecules, stretched poly-
mer gels12 and liquid crystals such as Poly-γ-benzyl-L/
D-glutamate (PBLG/PBDG),13À15 or Poly-γ-ethyl-L/
(1) For recent reviews, see: (a) Thiele, C. M. Eur. J. Org. Chem. 2008,
5673. (b) Gil, R. R. Angew. Chem., Int. Ed. 2011, 50, 7222.
(2) Yan, J.; Zartler, E. R. Magn. Reson. Chem. 2005, 43, 53.
(3) Tjandra, N.; Bax, A. Science 1997, 278, 1111.
(4) Losonczi, J. A.; Prestegard, J. H. J. Biomol. NMR 1998, 12, 447.
(5) Ottiger, M.; Bax, A. J. Biomol. NMR 1998, 12, 361.
(6) Rinaldi, F.; Lin, M.; Shapiro, M. J.; Petersheim, M. Biophys. J.
1997, 73, 3337.
(7) Klochkov, V. V.; Baikeev, R. F.; Skirda, V. D.; Klochkov, A. V.;
Muhamadiev, F. R.; Baskyr, I.; Berger, S. Magn. Reson. Chem. 2009, 47,
57.
(8) Hansen, M. R.; Mueller, L.; Pardi, A. Nat. Struct. Biol. 1998, 5,
1065.
(10) Swarbrick, J. D.; Ung, P.; Su, X.-C.; Maleckis, A.; Chhabra, S.;
Huber, T.; Otting., G.; Graham, B. Chem. Commun. 2011, 47, 7368.
(11) Pintacuda, G.; John, M.; Su, X.-C.; Otting, G. Acc. Chem. Res.
2007, 40, 206.
(12) Luy, B.; Kobzar, K.; Kessler, H. Angew. Chem., Int. Ed. 2004,
43, 1092.
(13) Thiele, C. M.; Berger, S. Org. Lett. 2003, 5, 705.
(14) Madiot, V.; Gree, D.; Gree, R.; Lesot, P.; Courtieu, J. Chem.
Commun. 2000, 169.
(15) Klochkov, V. V.; Khairutdinov, B. I.; Klochkov, A. V.; Tagirov,
M. S.; Thiele, C. M.; Berger, S.; Vershinina, I. S.; Stoikov, I. I.; Antipin,
I. S.; Konovalov, A. I. Russ. Chem. Bull. Int. Ed. 2004, 53, 1.
(16) Poliks, M. D.; Park, Y. W.; Samulski, E. T. Mol. Cryst. Liq.
Cryst. 1987, 153, 321.
(9) Zweckstetter, M.; Bax, A. J. Biomol. NMR 2001, 20, 365.
r
10.1021/ol202547y
2011 American Chemical Society
Published on Web 12/13/2011