X. Wang et al. / Bioorg. Med. Chem. Lett. 17 (2007) 6539–6545
6545
8. Appendino, G.; Szallasi, A. Life Sci. 1997, 60, 681.
following iv administration of 1 mg/kg, both 13 and 19
showed high rates of clearance (CL = 4040 mL/h/kg and
CL = 2860 mL/h/kg, respectively). However, compound
9. Caterina, M. J.; Leffler, A.; Malmberg, A. B.; Martin, W.
J.; Trafton, J.; Petersen-Zeitz, K. R.; Koltzenburg, M.;
Basbaum, A. I.; Julius, D. Science 2000, 288, 306.
10. Davis, J. B.; Gray, J.; Gunthrope, M. J.; Hatcher, J. P.;
Davey, P. T.; Overend, P.; Harries, M. H.; Latcham, J.;
Clapham, C.; Atkinson, K.; Hughes, S. A.; Rance, K.;
Grau, E.; Harper, A. J.; Pugh, P. L.; Rogers, D. C.;
Bingham, S.; Randall, A.; Sheardown, S. A. Nature 2000,
405, 183.
11. Norman, M. H.; Fotsch, C.; Doherty, E. M.; Bo, Y.;
Chen, N.; Chakrabarti, P.; Gavva, N. R.; Nishimura, N.;
Nixey, T.; Ognyanov, V. I.; Rzasa, R.; Stec, M.; Sura-
paneni, S.; Tamir, R.; Viswanadhan, V.; Zhu, J.; Treanor,
J. J. S. J. Med. Chem. 2007, 50, 3497.
12. Doherty, E. M.; Bannon, A. W.; Bo, Y.; Chen, N.;
Dominguez, C.; Falsey, J.; Fotsch, C.; Gavva, N. R.;
Katon, J.; Nixey, T.; Ognyanov, V. I.; Pettus, L.; Rzasa,
R.; Stec, M.; Surapaneni, S.; Tamir, R.; Zhu, J.; Treanor,
J. J. S.; Norman, M. H. J. Med. Chem. 2007, 50, 3515.
13. For the assay condition, see Doherty, E. M.; Fotsch, C.;
Bo, Y.; Chakrabarti, P.; Chen, N.; Gavva, N.; Han, N.;
Kelly, M. G.; Kincaid, J.; Klionsky, L.; Liu, Q.; Ognya-
nov, V. I.; Tamir, R.; Wang, X.; Zhu, J.; Norman, M. H.;
Treanor, J. S. J. Med. Chem. 2005, 48, 71.
14. Wang, H. L.; Katon, J.; Balan, C.; Bannon, A. W.;
Bernard, C.; Doherty, E. M.; Dominguez, C.; Gavva, N.;
Gore, V.; Ma, V.; Nishimura, N.; Surapaneni, S.; Tang,
P.; Tamir, R.; Thiel, O.; Treanor, J. S. J.; Norman, M. H.
J. Med. Chem. 2007, 50, 3528.
26 demonstrated
a
modest rate of clearance
(CL = 1350 mL/h/kg), a high volume of distribution
((Vss) 6440 mL/kg), and an elimination half-life (t1/2) of
5.5 h.21 In addition, compound 26 was relatively well ab-
sorbed following oral administration of 5 mg/kg
(Cmax = 280 ng/mL, AUC0ꢀ1 = 899 ng h/mL) with a
Foral = 24%.
In summary, a series of trisubstituted pyrimidines were
designed, synthesized, and evaluated for TRPV1 antago-
nist activities to block the capsaicin- and acid (pH 5)-in-
duced uptake of 45Ca2+ in CHO cell expressing rat
TRPV1. An automated solubility screening assay was
used as a valuable tool for the optimization of physical
properties of this series. Structure–activity and struc-
ture–solubility studies led to the identification of com-
pound 26, which was among the most potent analogues
(rTRPV1 CAP IC50 = 1.5 nM) in this series. This com-
pound exhibited 24% oral bioavailability. Importantly,
aqueous solubility of 26(P200 lg/mL, 0.01 HCl; 6.7 lg/
mL, PBS; 150 lg/mL SIF) was substantially improved
over compound 1.
15. All compounds were tested in a separate assay for agonist
activity.
Acknowledgments
16. (a) Tan, H.; Semin, D.; Wacker, M.; Cheetham, J. JALA
2005, 10, 364; (b) An automated solubility screening assay
was developed based on Symyx Solubility System (Santa
Clara, CA). Requiring 1 mg of solid compound, this assay
was used to determine the equilibrium solubility in three
aqueous media on a 96-well plate by HPLC-UV, with a
throughput of up to 192 compounds a week. The reporting
solubility range was 1–200 lg/mL, appropriate for discov-
ery lead optimization. Based on the validation results
obtained on commercially available drugs and Amgen
research compounds, the relative standard deviation of
this assay was found to be less than 10% for the solubility
range 50–200 lg/mL and up to 50% for the solubility
range 1–50 lg/mL.
We thank our colleagues Dr. Sekhar Surapaneni, Dr.
Annette Bak, and their coworkers in the PKDM and
pharmaceutics departments; Maggie Reed for carrying
out solubility studies; Chris Wilde for carrying out
NMR spectroscopic studies to confirm the structure of
compound 10; Dr. John Allen and Dr. Chris Fotsch for
the thorough review of the manuscript. We also acknowl-
edge Dr. Randy Hungate, Dr. Jean-Claude Louis, and
Dr. Paul J. Reider for their support.
References and notes
17. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P.
J. Adv. Drug Deliv. Rev. 1997, 23, 3.
1. Vanilloid receptor-1 is referred to as TRPV1 in this report
according to the adopted nomenclature Montell, C.;
Birnbaumer, L.; Flockerzi, V.; Bindels, R. J.; Bruford,
E. A.; Caterina, M. J.; Clapham, D. E.; Harteneck, C.;
Heler, S.; Julius, D.; Kojima, I.; Mori, Y.; Penner, R.;
Prawitt, D.; Scharenberg, A. M.; Schultz, G.; Shimizu, N.;
Zhu, M. X. Mol. Cell 2002, 9, 229.
2. Caterina, M. J.; Schumacher, M. A.; Tominaga, M.; Rosen,
T. A.; Levine, J. D.; Julius, D. Nature 1997, 389, 816.
3. Clapham, D. E.; Runnels, L. W.; Strubing, C. Nat. Rev.
Neurosci. 2001, 6, 387.
18. 1D NOESY was used to confirm the structure of
compound 10. NOEs were observed between the pyrim-
idine H19 and benzothiazole H7/8
:
NH
CF3
H19
O
N
S
O
N
N
H8
H7
Cl
10
4. Tominaga, M.; Caterina, M. J.; Malmberg, A. B.; Rosen,
T. A.; Gilbert, H.; Skinner, K.; Raumann, B. E.;
Basbaum, A. I.; Julius, D. Neuron 1998, 21, 531.
5. Smart, D.; Gunthrope, M. J.; Jerman, J. C.; Nasir, S.;
Gray, J.; Muir, A. I.; Chambers, J. K.; Randal, A. D.;
Davis, J. B. Br. J. Pharm. 2000, 129, 227.
.
19. Schomaker, J. M.; Delia, T. J. J. Org. Chem. 2001, 66, 7125.
20. Compound 26 was also active in the human TRPV1 assays
with IC50 values of 2.1 and 1.7 nM in the CAP- and acid-
mediated assays, respectively.
21. For comparison, the pharmacokinetic parameters for
compound
6. Hwang, S. W.; Cho, H.; Kwak, J.; Lee, S.-Y.; Kang, C.-J.;
Jung, J.; Cho, S.; Min, K. H.; Suh, Y.-G.; Kim, D.; Oh, U.
Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 6155.
7. Szallasi, A.; Blumberg, P. M. Pharmacol. Rev. 1999, 51,
159.
1
are as follows: CL = 190 mL/h/kg,
Vss = 1556 mL/kg, AUC0ꢀ1 = 5400 ng h/mL, t1/2 = 6.3 h,
Foral = 32%. For further details regarding the pharmaco-
kinetic profile of compound 1, see Ref. 12.