0.5 T scanner with suspensions of particles 1a–c in water con-
taining 0.2% xanthan gum. Microrods of 1a have a longitudinal
relaxivity (R1) of 41.44 and a transverse relaxivity (R2) of
94.64 mMꢀ1 sꢀ1 on a per formula basis, and nanorods of 1b
caused by the smallest nanoparticles of 1c at the same Mn
concentration. This size/shape-dependent behavior is thus
consistent with the above relaxivity data. Note that the general
reported trend of size dependent MR signals is that as particle
size increases the T1- or T2-weighted (e.g. T1 for Mn or T2 for
Gd ions) MR signal intensity continuously decreases which in
turn appears as darker MR images.15 Further works are in
progress to investigate the inverse size effect of MRI properties
and to evaluate the efficacy of 1 as MR contrast agents in vitro.
In conclusion, we have constructed a robust 3D Mn metal–
oligomer framework based on self-assembled metallosalen
hexamers and developed an efficient route to control synthesis
of its micro- and nanosized crystalline particles that exhibited
size-dependent MR relaxivity behaviors. With a precise
knowledge of their single crystal structures and facile tunability
of their building blocks, the present research holds great
promise in the development of novel MOF materials.
exhibited an R1 of 24.90 and an R2 of 49.80 mMꢀ1 sꢀ1
whereas the smallest nanoparticles of 1c had an R1 of
4.96 and an R2 of 6.14 mMꢀ1 ꢀ1. Thus, an interesting size-
,
s
dependent MR relaxivity behavior was observed for 1: both R1
and R2 increase with the increase of particle sizes (Fig. 4a).
This change trend was further confirmed by measurement of
R1 values on a Mercury plus 400 spectrometer (Fig. S10 in the
ESIw). The level of R1 relaxivities of 1a and 1b is comparable
with those of Mn-based nanoparticles4a,15,16 and may allow
their potential use as T1 contrast agents depending on the MR
pulse sequence employed.15
Indeed, as shown in Fig. 4b, the larger particles of 1a and 1b
are much efficient in enhancing the water signals in
T1-weighted images, whereas significant signal reduction was
This work was supported by NSFC-21025103/20971085,
‘‘973’’ Programs (2007CB209701 and 2009CB930403) and
Shanghai Science and Technology Committee (10DJ1400100).
Notes and references
z Crystal data for 1ꢁ6DMFꢁ6H2O: triclinic, space group: P1, a =
13.663(2) A, b = 18.329(3) A, c = 22.173(4) A, a = 67.204(3)1, b =
88.260(4)1, g = 86.712(3)1, V = 5110.5(15) A3, Z = 1, T = 123 K,
F(000) = 2181, rcalcd = 1.349 g cmꢀ3, m(Mo Ka) = 0.617 mmꢀ1
(l = 0.71073 A), 72 357 measured reflections, 32 894 independent
reflections (Rint = 0.0685), 2291 refined parameters, R1 = 0.0835, and
wR2 = 0.2038 for I > 2s(I), Flack parameter = 0.04(2), GOF =
1.051. CCDC 786168.
1 S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem., Int. Ed.,
2004, 43, 2334.
2 N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim,
M. O’Keeffe and O. M. Yaghi, Science, 2003, 300, 1127.
3 (a) A. M. Spokoyny, D. Kim, A. Sumrein and C. A. Mirkin, Chem.
Soc. Rev., 2009, 38, 1218; (b) W. Lin, W. J. Rieter and K. M. L.
Taylor, Angew. Chem., Int. Ed., 2009, 48, 650.
4 (a) K. M. L. Taylor, W. J. Rieter and W. Lin, J. Am. Chem. Soc.,
2008, 130, 14358; (b) W. J. Rieter, K. M. Pott, K. M. L. Taylor and
W. Lin, J. Am. Chem. Soc., 2008, 130, 11584; (c) K. M. L. Taylor,
A. Jin and W. Lin, Angew. Chem., Int. Ed., 2008, 47, 7722.
5 (a) X. Sun, S. Dong and E. Wang, J. Am. Chem. Soc., 2005, 127,
13102; (b) M. Oh and C. A. Mirkin, Nature, 2005, 438, 651.
6 (a) W. Cho, H. J. Lee and M. Oh, J. Am. Chem. Soc., 2008, 130,
16943; (b) Z. Ni and R. I. Masel, J. Am. Chem. Soc., 2006, 128,
Fig. 3 SEM images of particles 1a (a and b), 1b (c) and 1c (d).
12394; (c) N. S. John, C. Scherb, M. Shoaee, M. W. Anderson,
¨
M. P. Attfield and T. Bein, Chem. Commun., 2009, 6294.
7 (a) S. Hermes, T. Witte, T. Hikov, D. Zacher, S. Bahnmuller,
¨
G. Langstein, K. Huber and R. A. Fischer, J. Am. Chem. Soc.,
2007, 129, 5324; (b) T. Tsuruoka, S. Furukawa, Y. Takashima,
K. Yoshida, S. Isoda and S. Kitagawa, Angew. Chem., Int. Ed.,
2009, 48, 4739; (c) D. Zacher, J. Liu, K. Huber and R. A. Fischer,
Chem. Commun., 2009, 1031.
8 H. J. Lee, W. Cho, S. Jung and M. Oh, Adv. Mater., 2009, 21, 674.
9 J. Chen, T. Herricks and Y. Xia, Angew. Chem., Int. Ed., 2005, 44, 2589.
10 P. Caravan, J. J. Ellison, T. J. McMurry and R. B. Lauffer, Chem.
Rev., 1999, 99, 2293.
11 H. B. Na, I. C. Song and T. Hyeon, Adv. Mater., 2009, 21, 2133.
12 D. P. Riley, Chem. Rev., 1999, 99, 2573.
13 S. J. Wezenberg and A. W. Kleij, Angew. Chem., Int. Ed., 2008, 47,
2354.
14 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
15 H. B. Na, J. H. Lee, K. An, Y. Park, M. Park, I. S. Lee,
D. H. Nam, S. T. Kim, S. H. Kim, S. W. Kim, K. Lim,
K. S. Kim, S. O. Kim and T. Hyeon, Angew. Chem., Int. Ed.,
2007, 46, 5397.
16 J. Shin, R. M. Anisur, M. K. Ko, G. H. Im, J. H. Lee and I. S. Lee,
Angew. Chem., Int. Ed., 2009, 48, 321.
Fig. 4 (a) R1 relaxivity curves of 1a–c; (b) T1-weighted MR images of
suspensions of 1a–c in water containing 0.2% xanthan gum.
c
3182 Chem. Commun., 2011, 47, 3180–3182
This journal is The Royal Society of Chemistry 2011