our synthetic approach to 1 and 2 utilizing the regioselective
and diastereoselective CSI reaction.8
Our retrosynthetic analyses of 1 and 2 are outlined in
Scheme 1. The common intermediate 4 would be prepared
Table 1. Diastereoselective CSI Reaction of Cinnamyl
Polybenzyl Ether 6 in Various Solvents and at Different
Temperatures
Scheme 1. Retrosynthetic Analysis of 1 and 2
entry solvent T (°C) time (h) yielda (%) ratiob (5a/5b)
1
2
3
4
5
6
7
8
CH2Cl2
CHCl3
CCl4
Et2O
hexane
toluene
0
0
0
0
0
14
14
20
18
24
24
72
168
80
78
84
82
62
84
57 (35)c
51 (45)c
14:1
14:1
16:1
17:1
18:1
26:1
40:1
73:1
0
-40
-78
a Isolated yield of pure materials. b Isomer ratio determined by 1H NMR
spectroscopy. c Recovery yield of starting materials.
As solvent polarity or the reaction temperature was
reduced, the diastereoselectivity increased gradually. In
particular, reaction in toluene at low temperature produced
the desired product 5a in high yield (∼84%) with a
remarkable increase of diastereoselectivity (26:1-73:1). This
result reveals that the stereochemistry is retained more so in
nonpolar solvents and at low temperature. Regioselective
substitution at the cinnamylic position is expected because
regioselectivity is controlled by the stability of the carbo-
cation intermediate, i.e., the cinnamylic carbocation is more
by intramolecular cyclization of bromide 5a, which, in turn,
would come from the regioselective and diastereoselective
installation of an NHCbz group into cinnamyl polybenzyl
ether 6 using CSI.
In initial studies, we examined the regioselectivity and
diastereoselectivity of the reaction of anti-1,2-diether 6 with
CSI. Treatment of 6 with CSI afforded the anti-1,2-amino
alcohol 5a as the major product. The ratio of anti-1,2-amino
alcohol 5a and syn-1,2-amino alcohol 5b depended on
solvent and temperature, as shown in Table 1.
9
stable than the corresponding secondary carbocation.
Consistent with these observations, we investigated the
diastereoselectivity of the CSI reactions of the cinnamyl
polybenzyl ethers 6-9, which were prepared from com-
mercially available D-sugars (D-lyxose, D-ribose, D-arabinose,
and D-xylose), to afford the corresponding allylic amine
products 5a and 10-12 (Table 2).
(7) For the syntheses of 1,4-dideoxy-1,4-imino-D-arabinitol, see: (a) Fleet,
G. W. J.; Smith, P. W. Tetrahedron 1986, 42, 5685. (b) Ikota, N.; Hanaki,
A. Chem. Pharm. Bull. 1987, 35, 2140. (c) Fleet, G. W. J.; Witty, D. R.
Tetrahedron: Asymmetry 1990, 1, 119. (d) Kim, Y. J.; Kido, M.; Bando,
M.; Kitahara, T. Tetrahedron 1997, 53, 7501. (e) Hulme, A. N.; Mont-
gomery, C. H.; Henderson, D. K. J. Chem. Soc., Perkin Trans. 1 2000,
1837. (f) Lombardo, M.; Fabbroni, S.; Trombini, C. J. Org. Chem. 2001,
66, 1264. For the syntheses of (-)-lentiginosine and its enantiomer, see:
(g) Yoda, H.; Kitayama, H.; Katagiri, T.; Takabe, K. Tetrahedron:
Asymmetry 1993, 4, 1455. (h) Cordero, F. M.; Cicchi, S.; Goti, A.; Brandi,
A. Tetrahedron Lett. 1994, 35, 949. (i) Gurjar, M. K.; Ghosh, L.; Syamala,
M.; Jayasree, V. Tetrahedron Lett. 1994, 35, 8871. (j) Nukui, S.; Sodeoka,
M.; Sasai, H.; Shibasaki, M. J. Org. Chem. 1995, 60, 398. (k) Giovannini,
R.; Marcantoni, E.; Petrini, M. J. Org. Chem. 1995, 60, 5706. (l) McCaig,
A. E.; Meldrum, K. P.; Wightman, R. H. Tetrahedron 1998, 54, 9429. (m)
Ha, D.-C.; Yun, C.-S.; Lee, Y.-J. J. Org. Chem. 2000, 65, 621. (n) Yoda,
H.; Katoh, H.; Ujihara, Y.; Takabe, K. Tetrahedron Lett. 2001, 42, 2509.
(o) Rasmussen, M. O.; Delair, P.; Greene, A. E. J. Org. Chem. 2001, 66,
5438. (p) El-Nezhawy, A. O. H.; El-Diwani, H. I.; Schmidt, R. R. Eur. J.
Org. Chem. 2002, 4137. (q) Rabiczko, J.; Urbanczyk-Lipkowska, Z.;
Chmielewski, M. Tetrahedron 2002, 58, 1433. (r) Chandra, K. L.;
Chandrasekhar, M.; Singh, V. K. J. Org. Chem. 2002, 67, 4630. (s) Feng,
Z.-X.; Zhou, W.-S. Tetrahedron Lett. 2003, 44, 497. (t) Ichikawa, Y.; Ito,
T.; Nishiyama, T.; Isobe, M. Synlett 2003, 1034. (u) Ayad, T.; Ge´nisson,
Y.; Baltas, M.; Gorrichon, L. Chem. Commun. 2003, 582. (v) Raghavan,
S.; Sreekanth, T. Tetrahedron: Asymmetry 2004, 15, 565. (w) Cardona,
F.; Moreno, G.; Guarna, F.; Vogel, P.; Schuetz, C.; Merino, P.; Goti, A. J.
Org. Chem. 2005, 70, 6552.
Table 2. Diastereoselective CSI Reactions of Cinnamyl
Polybenzyl Ethers 6-9
a Isolated yield of pure materials. b Isomer ratio determined by 1H NMR
spectroscopy.
(8) (a) Kim, J. D.; Lee, M. H.; Lee, M. J.; Jung, Y. H. Tetrahedron Lett.
2000, 41, 5073. (b) Kim, J. D.; Lee, M. H.; Han, G.; Park, H.-J.; Zee, O.
P.; Jung, Y. H. Tetrahedron 2001, 57, 8257. (c) Kim, J. D.; Zee, O. P.;
Jung, Y. H. J. Org. Chem. 2003, 68, 3721. (d) Kim, J. D.; Kim, I. S.; Jin,
C. H.; Zee, O. P.; Jung, Y. H. Tetrahedron Lett. 2005, 46, 1097.
As shown in entries 3 and 4, the syn-1,2-diethers 8 and 9
in toluene at 0 °C afforded the corresponding syn-1,2-amino
4102
Org. Lett., Vol. 8, No. 18, 2006