changes would allow for the tailoring of sensor properties to an
application requirement. In addition the described synthetic route
would readily allow for analogues functionalised with other
substrate specific receptors to be generated.
This work was supported by the Program for Research in
Third-Level Institutions administered by the HEA. We thank Dr
D. Rai of the CSCB Mass Spectrometry Centre and Dr H.
Mueller-Bunz of the UCD Crystallographic Centre for analyses.
Notes and references
¯
{ Crystal data for compound 1a: C34H27BN4F2, M = 540.41, triclinic, P1
3
Fig. 6 pH responsive fluorescence spectra of 1b. Red trace pH = 1.0,
green trace pH = 4.0. Excitation at 630 nm, slit widths 5 nm, 1 6 1026
˚
˚
(#2), a = 10.755(3), b = 10.824(3), c = 12.163(4) A, V = 1288.9(7) A , m(Mo-
Ka) = 0.710 mm21, T = 113(2) K, Z = 2, Dc = 1.392 Mg m23, F(000) =
564, independent reflections 4977 (Rint = 0.0530). Final R for reflections
with I > 2s(I) R1 = 0.0944, wR2 = 0.2168, for all data R1 = 0.1443, wR2 =
0.2358. CCDC 285002.
M
in water–CrEL. INaCl = 150 mmol L21. Insert shows the sigmoidal plot
predicting an apparent pKa value of 2.0 at 25 uC.
§ Crystal data for compound 1b: C36H31BN4F2, M = 68.46, monoclinic,
As the effect of microenvironment polarity on excited state
sensing mechanisms is well established,14 we have examined the
emission sensitivity of 1a,b to polarity changes by determining the
spectral properties in four solvents of varying dipolarity. We were
pleased to observe that emissions from unprotonated 1a,b in
DMF, THF, 1,4-dioxane and cyclohexane were very weak and in
each case large fluorescence enhancements were recorded upon
addition of trifluoroacetic acid (ESI{).
In conclusion, we have outlined the flexible modular synthesis of
a new class of visible red fluorosensors based upon either an
integrated or virtual spacer design. Sensor performance is excellent
with large off–on fluorescence intensity responses and low
microenvironment polarity effects. The ability to control the
analyte induced photophysical responses by subtle conformational
3
˚
˚
C2, a = 42.555(7), b = 5.3195(9), c = 12.781(2) A, V = 2814.3(8) A , m(Mo-
Ka) = 0.710 mm21, T = 293(2) K, Z = 4, Dc = 1.342 Mg m23, F(000) =
1192, independent reflections 3777 (Rint = 0.0602). Final R for reflections
with I > 2s(I) R1 = 0.0509, wR2 = 0.0981, for all data R1 = 0.0854, wR2 =
0.1109. CCDC 285001. For crystallographic data in CIF or other electronic
format see DOI: 10.1039/b513878g
1 (a) V. Ntziachristos, J. Ripoll, L. V. Wang and R. Weissleder, Nat.
Biotechnol., 2005, 23, 313; (b) R. Weissleder, Nat. Rev., 2002, 2, 1; (c)
M. Rudin and R. Weissleder, Nat. Rev., 2003, 2, 123; P. Mitchell, Nat.
Biotechnol., 2001, 19, 1013.
2 (a) X. Peng, F. Song, B. Lu, Y. Wang, W. Zhou, J. Fan and Y. Gao,
J. Am. Chem. Soc., 2005, 127, 4170; (b) B. Ozmen and B. U. Akkaya,
Tetrahedron Lett., 2000, 41, 9185.
3 (a) B. Arunkumar and A. Ajayaghosh, Chem. Commun., 2005, 599; (b)
W. Pham, R. Weissleder and C.-H. Tung, Angew. Chem., Int. Ed., 2002,
41, 3659; (c) U. Oguz and B. U. Akkaya, J. Org. Chem., 1998, 63, 6059.
4 (a) Z. Shen, H. Ro¨hr, K. Rurack, H. Uno, M. Spieles, B. Schulz,
G. Reck and N. Ono, Chem.–Eur. J., 2004, 10, 4853; (b) K. Rurack,
M. Kollmannsberger and J. Daub, Angew. Chem., Int. Ed., 2001, 40,
385.
5 K. Rurack, U. Resch-Genger, J. L. Bricks and M. Spieles, Chem.
Commun., 2000, 2103.
6 (a) J. Killoran, L. Allen, J. F. Gallagher, W. M. Gallagher and
D. F. O’Shea, Chem. Commun., 2002, 1862; (b) A. Gorman, J. Killoran,
C. O’Shea, T. Kenna, W. M. Gallagher and D. F. O’Shea, J. Am.
Chem. Soc., 2004, 126, 10619; (c) W. M. Gallagher, L. T. Allen,
C. O’Shea, T. Kenna, M. Hall, J. Killoran and D. F. O’Shea, Br. J.
Cancer, 2005, 92, 1702; (d) S. O. McDonnell, M. J. Hall, L. T. Allen,
A. Byrne, W. M. Gallagher and D. F. O’Shea, J. Am. Chem. Soc., 2005,
127, 16360.
7 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley,
C. P. McCoy, J. T. Rademacher and T. B. Rice, Chem. Rev., 1997, 97,
1515.
8 (a) K. Rurack and U. Resch-Genger, Chem. Soc. Rev., 2002, 31, 116; (b)
M. Maus and K. Rurack, New J. Chem., 2000, 24, 677; (c)
M. Kollmannsberger, T. Gareis, S. Heinl, J. Breu and J. Daub,
Angew. Chem., Int. Ed. Engl., 1997, 36, 1333.
Fig. 7 pH responsive absorbance spectra using a 1 6 1025 M solution
of 1b in water–CrEL. Red trace pH = 1.0, green trace pH = 4.0. INaCl
150 mmol L21
=
.
9 (a) J. F. Callan, A. P. de Silva, J. Ferguson, A. J. M. Huxley and
A. M. O’Brien, Tetrahedron, 2004, 60, 11125; (b) K. Rurack, A. Danel,
K. Rotkiewicz, D. Grabka, M. Spieles and W. Rettig, Org. Lett., 2002,
4, 4647.
10 J. H. Hartley, T. D. James and C. J. Ward, J. Chem. Soc., Perkin Trans.
1, 2000, 3155.
11 M. J. Hall, S. O. McDonnell, J. Killoran and D. F. O’Shea, J. Org.
Chem., 2005, 70, 5571.
12 J. Killoran, J. F. Gallagher, P. V. Murphy and D. F. O’Shea, New J.
Chem., 2005, 29, 1258.
13 pKa values in a micellar microenvironment are often lower than might
be anticipated. M. S. Fernandez and P. Fromherz, J. Phys. Chem., 1977,
81, 1755.
14 (a) B. Bag and P. K. Bharadwaj, J. Phys. Chem. B, 2005, 109, 4377; (b)
R. A. Bissell, A. P. de Silva, W. T. M. L. Fernando,
S. T. Patumathavithana and T. K. S. D. Samarasinghe, Tetrahedron
Lett., 1991, 32, 425.
Fig. 8 X-Ray crystal structure of 1b. Torsion angle (Q) C19–C18–C21–
C26 (marked by arrows) = 53.4(7)u.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 1503–1505 | 1505