Paper
RSC Advances
(KF0805), the Program for Innovative Research Team of
Liaoning Province (Grant No. LS2010042).
Table 4 Parameters obtained by fitting the EIS spectra to an electrochemical
model
Dye
Rs (ohm)
Rrec (ohm)
Rce (ohm)
CC101
CC102
CC103
19.4
18.1
17.3
21.8
20.1
27.8
3.39
3.25
3.24
References
¨
1 B. O’Regan and M. Gratzel, Nature, 1991, 353, 737.
2 A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M.
K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S.
¨
M. Zakeeruddin and M. Gratzel, Science, 2011, 334, 629.
ison, all of the CC series dyes showed higher efficiency in
DSSC application than C1-1 under the same experimental
conditions.
3 W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang,
F. Wang, C. Pan and P. Wang, Chem. Mater., 2010, 22, 1915.
4 G. Zhang, Y. Bai, R. Li, D. Shi, S. Wenger, S.
¨
M. Zakeeruddin, M. Gratzel and P. Wang, Energy Environ.
Sci., 2009, 2, 92.
Electrochemical impedance spectroscopy
To further study the interface charge transfer process of the
DSSCs using the dyes CC101–CC103, the electrochemical
impedance spectroscopy (EIS) was performed in the dark
under 20.75 V bias applied voltage with a frequency range of
1022 to 106 Hz, shown in Fig. 5 and Table 4. Some important
parameters can be obtained by fitting the EIS spectra to an
electrochemical model. RS, Rrec and RCE are corresponding to
the series resistance, charge transfer resistance at the dye/
TiO2/electrolyte interface and counter electrode (CE), respec-
tively. One can see that the Rrec of the device sensitized by dye
CC103 (Rrec = 27.8 V) is much bigger than that of the devices
sensitized by CC101 (Rrec = 21.8 V) and CC102 (Rrec = 20.1 V),
indicating an effective suppression of the electron recombina-
tion rate between the TiO2 and the electrolyte due to the
introduction of long alkyl chain. Therefore, a much higher Voc
was achieved by employing CC103 as sensitizers.
5 G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu and
P. Wang, Chem. Commun., 2009, 2198.
6 H. Choi, I. Raabe, D. Kim, F. Teocoli, C. Kim, K. Song, J.
¨
H. Yum, J. Ko, M. K. Nazeeruddin and M. Gratzel, Chem.–
Eur. J., 2010, 16, 1193.
7 S. Kim, J. K. Lee, S. O. Kang, J. Ko, J.-H. Yum, S. Fantacci,
F. De Angelis, D. Di Censo, M. K. Nazeeruddin and
¨
M. Gratzel, J. Am. Chem. Soc., 2006, 128, 16701.
8 H. Choi, C. Baik, S. O. Kang, J. Ko, M.-S. Kang, M.
¨
K. Nazeeruddin and M. Gratzel, Angew. Chem., Int. Ed.,
2008, 47, 327.
9 N. Koumura, Z.-S. Wang, S. Mori, M. Miyashita, E. Suzuki
and K. Hara, J. Am. Chem. Soc., 2006, 128, 14256.
10 Z.-S. Wang, N. Koumura, Y. Cui, M. Takahashi,
H. Sekiguchi, A. Mori, T. Kubo, A. Furube and K. Hara,
Chem. Mater., 2008, 20, 3993.
11 K. R. J. Thomas, Y.-C. Hsu, J. T. Lin, K.-M. Lee, K.-C. Ho, C.-
H. Lai, Y.-M. Cheng and P.-T. Chou, Chem. Mater., 2008, 20,
1830.
Conclusion
12 J. H. Yum, D. P. Hagberg, S. J. Moon, K. M. Karlson,
T. Marinado, L. Sun, A. Hagfeldt, M. K. Nazeeruddin and
In this study, a series of highly efficient organic dyes
containing a benzopyran ring as a p–bridge were designed
and developed for dye-sensitized solar cells (DSSCs) for the
first time. When attached to TiO2, the absorption spectra of
the dyes CC101–CC103 can extend to 700 nm. This series of
dyes can efficiently convert light to photocurrent in the region
of 380 nm–600 nm, with the highest IPCE values exceeding
90%. Through the modification of the donor units, an
efficiency as high as 7.5% has been achieved under standard
light illumination (AM 1.5G, 100 mW cm22), for CC103 based
DSSCs. Based on the detailed photoelectrochemical study, this
series of organic dyes containing a benzopyran ring as a p–
bridge will diversify dye structures with high efficiencies.
¨
M. Gratzel, Angew. Chem., Int. Ed., 2009, 48, 1576.
13 H.-Y. Yang, Y.-S. Yen, Y.-C. Hsu, H.-H. Chou and J. T. Lin,
Org. Lett., 2010, 12, 16.
14 Z.-S. Wang, N. Koumura, Y. Cui, M. Miyashita, S. Mori and
K. Hara, Chem. Mater., 2009, 21, 2810.
15 M. Xu, R. Li, N. Pootrakulchote, D. Shi, J. Guo, Z. Yi, S.
¨
M. Zakeeruddin, M. Gratzel and P. Wang, J. Phys. Chem. C,
2008, 112, 19770.
16 H. Qin, S. Wenger, M. Xu, F. Gao, X. Jing, P. Wang, S.
M. Zakeeruddin and M. Gratzel, J. Am. Chem.Soc., 2008,
130, 9202.
17 W.-H. Liu, I.-C. Wu, C.-H. Lai, C.-H. Lai, P.-T. Chou, Y.-
T. Li, C.-L. Chen, Y.-Y. Hsu and Y. Chi, Chem. Commun.,
2008, 5152.
¨
18 Y. Liang, B. Peng, J. Liang, Z. Tao and J. Chen, Org. Lett.,
2010, 12, 1204.
19 J. T. Lin, P.-C. Chen, Y.-S. Yen, Y.-C. Hsu, H.-H. Chou and P.
M.-C. Yeh, Org. Lett., 2009, 11, 97.
Acknowledgements
We gratefully acknowledge the financial support of this work
from China Natural Science Foundation (Grant 21076039,
Grant 21276044, Grant 21120102036 and 20923006), the
National Basic Research Program of China (Grant No.
2009CB220009), the Swedish Energy Agency, K&A Wallenberg
Foundation, and the State Key Laboratory of Fine Chemicals
20 R. Li, X. Lv, D. Shi, D. Zhou, Y. Cheng, G. Zhang and
P. Wang, J. Phys. Chem. C, 2009, 113, 7469.
21 Y.-S. Yen, Y.-C. Hsu, J. T. Lin, C.-W. Chang, C.-P. Hsu and
D.-J. Yin, J. Phys. Chem. C, 2008, 112, 12557.
22 H. Choi, H. Choi, S. Paek, K. Song, M.-S. Kang and J. Ko,
Bull. Korean Chem. Soc., 2010, 31, 125.
12692 | RSC Adv., 2013, 3, 12688–12693
This journal is ß The Royal Society of Chemistry 2013