3042
J. Li et al. / Bioorg. Med. Chem. Lett. 16 (2006) 3039–3042
8. Mattheeuws, D.; Rottiers, R.; Baeyens, D. J. Am. Anim.
Hosp. Assoc. 1990, 20, 287.
9. Panciera, D. L.; Thomas, C. B.; Eicker, S. W.; Atkins, C.
E. J. Am. Vet. Med. Assoc. 1990, 197, 1504.
10. Robertson, I. D. Prev. Vet. Med. 1999, 40, 75.
11. Scarlett, J. M.; Donoghue, S. J. Am. Vet. Med. Assoc.
1998, 212, 1725.
12. Wetterau, J. R.; Lin, M. C.; Jamil, H. Biochim. Biophys.
Acta 1997, 1345, 136.
13. Gordon, D. A.; Wetterau, J. R.; Gregg, R. E. Trends Cell
Biol. 1995, 5, 317.
14. Olofsson, S. O.; Asp, L.; Boren, J. Curr. Opin. Lipidol.
1999, 10, 341.
15. Wetterau, J. R.; Gregg, R. E.; Harrity, T. W.; Arbeeny,
C.; Cap, M.; Connolly, F.; Chu, C.-H.; George, R. J.;
Gordon, D. A.; Jamil, H.; Jolibois, K. G.; Kunselman, L.
K.; Lan, S.-J.; Maccagnan, T. J.; Ricci, B.; Yan, M.;
Young, D.; Chen, Y.; Fryszman, O. M.; Logan, J. V. H.;
Musial, C. L.; Poss, M. A.; Robl, J. A.; Simpkins, L. M.;
Slusarchyk, W. A.; Sulsky, R.; Taunk, P.; Magnin, D. R.;
Tino, J. A.; Lawrence, R. M.; Dickson, J. K.; Biller, S. A.
Science 1998, 282, 751.
16. Chandler, C. E.; Hickman, M. A.; Lundy, K. M.; Morgan,
B. P. EP1099439A2, 2001.
17. Chandler, C. E.; Wilder, D. E.; Pettini, J. L.; Savoy, Y. E.;
Petras, S. F.; Chang, G.; Vincent, J.; Harwood, H. J.
J. Lipid Res. 2003, 44, 1887.
18. Iglesias, P.; Diez, J. J. Expert Opin. Investig. Drugs 2003,
12, 1777.
19. Sorbera, L. A.; Martin, L.; Silvestre, J.; Castaner, J. Drugs
Future 2000, 25, 1138.
20. Roevens, P.; Heeres, J.; Meerpoel, L.; Dupont, A.;
Borghys, H. Atherosclerosis 1999, 144(Suppl. 1), 38.
21. Ksander, G. M.; deJesus, R.; Yuan, A.; Fink, C.; Moskal,
M.; Carlson, E.; Kukkola, P.; Bilci, N.; Wallace, E.;
Neubert, A.; Feldman, D.; Mogelesky, T.; Poirier, K.;
Jeune, M.; Steele, R.; Wasvery, J.; Stephan, Z.; Cahill, E.;
Webb, R.; Navarrete, A.; Lee, W.; Gilbson, J.; Alexander,
N.; Sharif, H.; Hospattankar, A. J. Med. Chem. 2001, 44,
4677.
22. Robl, J. A.; Sulsky, R.; Sun, C.-Q.; Simpkins, L. M.; Wang,
T.; Dickson, J. K.; Chen, Y.; Magnin, D. R.; Taunk, P.;
Slusarchyk, W. A.; Biller, S. A.; Lan, S.-J.; Connolly, F.;
Kunselman, L. K.; Sabrah, T.; Jamil, H.; Gordon, D.;
Harrity, T. W.; Wetterau, J. R. J. Med. Chem. 2001, 44, 851.
23. Bertinato, P.; Blize, A. E.; Bronk, B. S.; Cheng, H.;
Huatan, H.; Li, J.; Mason, C. P. WO 2003002533, 2003.
24. Bertinato, P.; Bronk, B. S.; Cheng, H.-M.; Chang, G.;
Cole, B. M.; Li, J.; Ruggeri, R. B. WO 2004056777, 2004.
25. Canine in vitro MTP assays. (A) Canine hepatic microsome
isolation: canine microsomes are first isolated from canine
liver by thawing frozen liver on ice and rinsing several times
with 0.25 M sucrose. A 50% liver homogenate (w/v) is made
in 0.25 M sucrose. The homogenate is diluted 1:1 with
0.25 M sucrose, and centrifuged at 10,000g at 4 ꢁC for
20 min. The supernatant is saved. The pellet is re-suspended
in a minimal volume of 0.25 M sucrose and re-centrifuged at
10,000g for 20 min at 4 ꢁC. The supernatants are combined
and centrifuged at 105,000g for 75 min at 4 ꢁC. The
supernatant is discarded and the resulting microsomal
pellet is saved. The microsomal pellet is re-suspended in a
minimum volume of 0.25 M sucrose and diluted to 3 ml/g
liver weight in 0.15 M Tris–HCl, pH 8.0. The resulting
suspension is divided into 12 tubes and centrifuged at
105,000g for 75 min. The resulting microsomal pellets are
stored at ꢀ80 ꢁC until needed. MTP is isolated by thawing
the microsomal pellet tube and suspending in 12 ml/tube of
cold 50 mM Tris–HCl, 50 mM KCl, 2 mM MgCl, pH 7.4,
and slowly adding 1.2 ml of a 0.54% deoxycholate, pH 7.4
solution. After 30 min incubation on ice with gentle mixing,
the solution is centrifuged at 105,000g for 75 min at 4 ꢁC.
The supernatant, containing soluble MTP, is dialyzed for 2–
3 days with 5 changes of assay buffer (15.0 mM Tris–HCl,
40 mM NaCl, 1 mM EDTA, 0.02% NaN3, pH 7.4). (B)
MTP activity assay reagents: donor liposomes are created
by adding 447 mM egg phosphatidylcholine (68/20 ml),
83 mM bovine heart cardiolipin (169/20 ml) and 0.91 mM
[14C]triolein (110 Ci/mol) (20/20 ml). The lipids are avail-
able in chloroform and are first dried under nitrogen and
then hydrated in assay buffer to the volume needed. To
create liposomes, lipids are sonicated for ꢁ7 min. Lipids are
centrifuged at 105,000g for 2 h and liposomes are harvested
by removing the top ꢁ80% of supernatant into separate
tube. Acceptor liposomes are created by adding 1.33 mM
egg phosphatidylcholine (404/40 ml), 2.6 mM triolein (100/
40 ml) and 0.5 nM [3H]egg phosphatidylcholine (50 Ci/mol)
(10/40 ml). The lipids are available in chloroform and are
first dried under nitrogen and then hydrated in assay buffer
to the volume needed. To create liposomes, lipids are
sonicated for ꢁ20 min. Lipids are centrifuged at 105,000g
for 2 h and are harvested by removing the top ꢁ80% of
supernatant into separate tube. (C) MTP in vitro lipid
transfer inhibition assay. Appropriately diluted drug or
control samples in 100 ml assay buffer containing 5% BSA
are added to reaction tubes containing assay buffer, 50 ml
donor liposomes, 100 ml acceptor liposomes, and partially
purified liver MTP. The tubes are vortexed and incubated
on a tube shaker for 1 h at 37 ꢁC to allow lipid transfer
reaction to occur. Donor liposomes are precipitated by
adding 300 ml of a 50% (w/v) DEAE cellulose suspension in
assay buffer to each tube, followed by gentle/repeated
inversion for5 min at room temperature. Tubes are then
centrifuged at ꢁ1000 rpm to pellet resin. Four hundred
milliliters of supernatant is transferred into a scintillation
vial with scintillation fluid and DPM counts for both [3H]
and [14C] are determined. Triolein transfer is calculated by
comparing the amount of [14C] and [3H] remaining in the
supernatant to [14C] and [3H] in the original donor and
acceptor liposomes, respectively. % Triolein transfer =
([14C]supernatant/[14C]donor) · ([3H]acceptor/[3H]superna-
tant) · 100 IC50 values are obtained using standard methods
and first order kinetic calculations.