Highly Active Au(I) Catalyst
A R T I C L E S
as a means to circumvent some of the difficulties associated
with catalytic alkene hydrofunctionalization.13 However, whereas
Ag(I), Au(III), and Cu(I) complexes catalyze the endo-hydro-
functionalization of allenes with N-,14 O-,15,16 and S-17 nucleo-
philes, the exo-hydrofunctionalization of allenes with carbon
and heteroatom nucleophiles remains problematic. Although the
Ag(I)-catalyzed exo-hydroamination18 and exo-hydroalkoxyla-
tion19 of allenes and the Pd(II)-catalyzed exo-hydroamination20,21
and exo-hydroalkylation21,22 of allenes have been reported, these
protocols suffer from a number of shortcomings including
limited substrate scope, low reactivity, and/or modest turnover
numbers.23,24 Similarly, d0-lanthanide complexes are active
catalysts for the exo-hydroamination of γ- and δ-amino al-
lenes,25,26 but the synthetic utility of these protocols is com-
promised by the poor functional group compatibility and
excessive air- and moisture-sensitivity of the oxophilic catalyst.
As part of a program directed toward the development of
new catalytic methods for the transition metal-catalyzed hy-
drofunctionalization of unactivated alkenes with carbon,5 ni-
trogen,8,9 and oxygen11 nucleophiles, we recently reported the
gold-catalyzed intramolecular exo-hydroamination of N-alkenyl
carbamates.9,27-33 As an example of this protocol, treatment of
the N-5-hexenyl carbamate 1 with a catalytic 1:1 mixture of
Au[P(t-Bu)2(o-biphenyl)]Cl (2) and AgOTf (5 mol %) in
dioxane at 60 °C for 18 h led to isolation of protected pyrrolidine
3 in 97% yield (eq 1). Employment of the sterically hindered
o-biphenyl ligand was crucial for high activity; cyclization of
1 catalyzed by a 1:1 mixture of Au(PPh3)Cl and AgOTf (5 mol
%) reached only 75% conversion after 24 h at 100 °C. The
high activity of the 2/AgOTf catalyst system with respect to
the exo-hydroamination of N-alkenyl carbamates suggested that
2/AgOTf might also catalyze the exo-hydroamination of N-
allenyl carbamates under mild conditions. Indeed, here we report
that a 1:1 mixture of 2 and AgX (X ) OTf, OTs) is an
exceptionally active catalyst system for the exo-hydroamination
of N-allenyl carbamates and also for the exo-hydroalkoxylation
of allenyl alcohols and the exo-hydroarylation of 2-allenyl
indoles.
(11) Qian, H.; Han, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 9536.
(12) Padwa, A.; Filipkowski, M. A.; Meske, M.; Murphree, S. S.; Watterson,
S, H.; Ni, Z. J. Org. Chem. 1994, 59, 588.
(13) Bates, R. W.; Satcharoen, V. Chem. Soc. ReV. 2002, 31, 12.
(14) (a) Lee, P. H.; Kim, H.; Lee, K.; Kim, M.; Noh, K.; Kim, H.; Seomoon,
D. Angew. Chem. Int. Ed. 2005, 44, 1840. (b) Ohno, H.; Toda, A.; Miwa,
Y.; Taga, T.; Osawa, E.; Yamaoka, Y.; Fujii, N.; Ibuka, T. J. Org. Chem.
1999, 64, 2992. (c) Dieter, R. K.; Yu, H. Org. Lett. 2001, 3, 3855. (d)
Morita, N.; Krause, N. Org. Lett. 2004, 6, 4121. (e) Prasad, J. S.; Liebeskind,
L. S. Tetrahedron Lett. 1988, 29, 4253. (f) Claesson, A.; Sahlberg, C.;
Luthman, K. Acta Chem. Scand. 1979, 309.
(15) (a) Ma, S.; Yu, Z.; Wu, S. Tetrahedron 2001, 57, 1585. (b) Hoffmann-
Ro¨der, A.; Krause, N. Org. Lett. 2001, 3, 2537. (c) Young, J.-j.; Jung,
L.-j.; Cheng, K.-m. Tetrahedron Lett. 2000, 41, 3411. (d) Young, J.-j.; Jung,
L.-j.; Cheng, K.-m. Tetrahedron Lett. 2000, 41, 3415. (e) Marshall, J. A.;
Wang, X. J. Org. Chem. 1991, 56, 4913. (f) Marshall, J. A.; Pinney, K. G.
J. Org. Chem. 1993, 58, 7180. (g) Marshall, J. A.; Bartley, G. S. J. Org.
Chem. 1994, 59, 7169. (h) Olsson, L.-I.; Claesson, A. Synthesis 1979, 743.
(i) Nikam, S. S.; Chu, K.-H.; Wang, K. K. J. Org. Chem. 1986, 51, 745.
(j) Walkup, R. D.; Park, G. Tetrahedron Lett. 1987, 28, 1023. (k) VanBrunt,
M. P.; Standaert, R. F. Org. Lett. 2000, 2, 705. (l) Lepage, O.; Kattnig, E.;
Furstner, A. J. Am. Chem. Soc. 2004, 126, 15970. (m) Marshall, J. A.;
Wolf, M. A.; Wallace, E. M. J. Org. Chem. 1997, 62, 367.
(16) For examples of the catalytic cyclization of allenyl ketones see: (a) Hashmi,
A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem. Int. Ed.
2000, 39, 2285. (b) Hashmi, A. S. K.; Ruppert, T. L.; Knofel, T.; Bats, J.
W. J. Org. Chem. 1997, 62, 7295. (c) Marshall, J. A.; Robinson, E. D. J.
Org. Chem. 1990, 55, 3450. (d) Marshall, J. A.; Wang, X. J. Org. Chem.
1991, 56, 960. (e) Marshall, J. A.; Wang, X. J. Org. Chem. 1992, 57, 3387.
(f) Marshall, J. A.; Wallace, E. M.; Coan, P. S. J. Org. Chem. 1995, 60,
796. (g) Marshall, J. A.; Sehon, C. A. J. Org. Chem. 1995, 60, 5966. (h)
Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127,
10500.
(17) Morita, N.; Krause, N. Angew. Chem. Int. Eng. 2006, 45, 1897.
(18) (a) Huby, N. J. S.; Kinsman, R. G.; Lathbury, D.; Vernon, P. G.; Gallagher,
T. J. Chem. Soc., Perkin Trans. 1 1991, 145. (b) Gallagher, T.; Jones, S.
W.; Mahon, M. F.; Molloy, K. C. J. Chem. Soc., Perkin Trans. 1 1991,
2193. (c) Arseniyadis, S.; Sartoretti, J. Tetrahedron Lett. 1985, 26, 729.
(d) Fox, D. N. A.; Lathbury, D.; Mahon, M. F.; Molloy, K. C.; Gallagher,
T. J. Chem. Soc., Chem. Commun. 1989, 1073. (e) Ha, J. D.; Cha, J. K. J.
Am. Chem. Soc. 1999, 121, 10012. (f) Kinsman, R.; Lathbury, D.; Vernon,
P.; Gallagher, T. J. Chem. Soc., Chem. Commun. 1987, 243. (g) Lathbury,
D.; Gallagher, T. J. Chem. Soc., Chem. Commun. 1986, 114. (h) Lathbury,
D. C.; Shaw, R. W.; Bates, P. A.; Hursthouse, M. B.; Gallagher, T. J.
Chem. Soc., Perkin Trans. 1 1989, 2415.
(19) (a) Gallagher, T. J. Chem. Soc., Chem. Commun. 1984, 1554. (b) Audin,
P.; Doutheau, A.; Ruest, L.; Gore, J. Bull. Chem. Soc. Fr. 1981, 313. (c)
Audin, P.; Doutheau, A.; Gore, J. Bull. Chem. Soc. Fr. 1984, 297. (d) Audin,
P.; Dutheau, A.; Gore, J. Tetrahedron Lett. 1982, 23, 4337. (e) Chilot,
J.-J.; Doutheau, A.; Gore, J. Bull. Chem. Soc. Fr. 1984, 307.
Results and Discussion
exo-Hydroamination of N-Allenyl Carbamates. Mixtures
of 2 and AgOTf in dioxane catalyzed the exo-hydroamination
of 4,5-hexadienyl carbamates within minutes at room temper-
ature. For example, reaction of N-allenyl carbamate 4 with a
(24) For examples of the Pd(II)-catalyzed intermolecular hydrofunctionalization
of allenes with carbon and heteroatom nucleophiles see: (a) Al-Masum,
M.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 3809. (b) Yamamoto,
Y.; Al-Masum, M.; Asao, N. J. Am. Chem. Soc. 1994, 116, 6019. (c) Trost,
B. M.; Gerusz, V. J. J. Am. Chem. Soc. 1995, 117, 5156. (d) Zhao, C.-Q.;
Han, L.-B.; Tanaka, M. Organometallics 2000, 19, 4196. (e) Yamamoto,
Y.; Al-Masum, M.; Fujiwara, N.; Asao, N. Tetrahedron Lett. 1995, 36,
2811. (f) Ogawa, A.; Kudo, A.; Hirao, T. Tetrahedron Lett. 1998, 39, 5213.
(g) Kamijo, S.; Al-Masum, M.; Yamamoto, Y. Tetrahedron Lett. 1998,
39, 691. (h) Al-Masum, M.; Meguro, M.; Yamamoto, Y. Tetrahedron Lett.
1997, 38, 6071. (i) Besson, L.; Gore´, J.; Cazes, B. Tetrahedron Lett. 1995,
36, 3853-3857.
(25) (a) Arredondo, V. M.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc.
1998, 120, 4871. (b) Arredondo, V. M.; McDonald, F. E.; Marks, T. J.
Organometallics 1999, 18, 1949. (c) Hong, S.; Kawaoka, A. M.; Marks,
T. J. J. Am. Chem. Soc. 2003, 125, 15878.
(26) For the Ti(IV)-catalyzed hydroamination of allenylamines to form cyclic
imines see: (a) Ackermann, L.; Bergman, R. G. Org. Lett. 2002, 4, 1475.
(b) Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am. Chem. Soc. 2003,
125, 11956. (c) Hoover, J. M.; Petersen, J. R.; Pikul, J. H.; Johnson, A. R.
Organometallics 2004, 23, 4614.
(27) Examples of the Au(I) catalyzed hydrofunctionalization of alkynes with
C,28 N30, and O31, nucleophiles have appeared recently.
(28) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004,
126, 4526.
,
29
32
(29) (a) Ferrer, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 1105.
(b) Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem. Int.
Ed. 2004, 43, 5350. (c) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2005,
127, 6962.
(20) Meguro, M.; Yamamoto, Y. Tetrahedron Lett. 1998, 39, 5421.
(21) (a) Ma, S. Chem. ReV. 2005, 105, 2829. (b) Zimmer, R.; Dinesh, C. U.;
Nandanan, E.; Khan, F. A. Chem. ReV. 2000, 100, 3067. (c) Yamamoto,
Y.; Radhakrishnan, U. Chem. Soc. ReV. 1999, 28, 199.
(30) (a) Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349. (b)
Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127,
11260.
(31) (a) Genin, E.; Toullec, P. Y.; Antoniotti, S.; Brancour, C.; Genet, J.-P.;
Michelet, V. J. Am. Chem. Soc. 2006, 128, 3112. (b) Buzas, A.; Gagosz,
F. Org. Lett. 2006, 8, 515. (c) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka,
M. Angew. Chem. Int. Ed. 2002, 41, 4563. (d) Casado, R.; Contel, M.;
Laguna, M.; Romero, P.; Sanz, S. J. Am. Chem. Soc. 2003, 125, 11925.
(e) Roembke, P.; Schmidvaur, H.; Cronje, S.; Raubenheimer, H. J. Mol.
Catal. A 2004, 212, 35.
(22) (a) Meguro, M.; Kamijo, S.; Yamamoto, Y. Tetrahedron Lett. 1996, 37,
7453. (b) Trost, B. M.; Michellys, P.-Y.; Gerusz, V. J. Angew. Chem., Int.
Ed. Engl. 1997, 36, 1750.
(23) High activity in the Pd-catalyzed hydrofunctionalization is realized only
in the cases of allenes activated by an aryl group or a heteroatom. (a)
Kamijo, S.; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 1747. (b) Trost, B.
M.; Ja¨kel, C.; Plietker, B. J. Am. Chem. Soc. 2003, 125, 4438.
(32) Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. Org. Lett. 2005, 7, 5409.
9
J. AM. CHEM. SOC. VOL. 128, NO. 28, 2006 9067