Notes and references
1 R. Breslow and S. D. Dong, Chem. Rev., 1998, 98, 1997.
2 A. Gissot and J. Rebek, J. Am. Chem. Soc., 2004, 126, 7424.
3 K. Uekama, F. Hirayama and T. Irie, Chem. Rev., 1998, 98, 2045.
4 H.-h. Yu, A. E. Pullen, M. G. Bu¨chel and T. M. Swager, Angew. Chem.,
Int. Ed., 2004, 43, 3700.
5 S. K. Kim, S. H. Lee, J. Y. Lee, J. Y. Lee, R. A. Bartsch and J. S. Kim,
J. Am. Chem. Soc., 2004, 126, 16499.
6 K. A. Connors, Chem. Rev., 1997, 97, 1325; V. T. D’Souza and
K. B. Lipkowitz, Chem. Rev., 1998, 98, 1741; W. S. Cai, Y. M. Yu and
X. G. Shao, J. Mol. Model., 2005, 11, 186.
7 A. Ikeda and S. Shinkai, Chem. Rev., 1997, 97, 1713; Calixarenes – A
Versatile Class of Macrocyclic Compounds, ed. J. Vicens and V. Bohmer,
Kluwer, Norwell, MA, 1991; Calixarenes Revisited, ed. C. D. Gutsche,
Royal Society of Chemistry, Cambridge, UK, 1998; Calixarenes 2001,
ed. Z. Asfari, V. Bohmer, J. Harrowfield and J. Vicens, Kluwer,
Norwell, MA, 2001; Calixarenes in Action, ed. L. Mandolini and
R. Ungaro, Imperial College Press, London, UK, 2000.
8 I. Tabushi and K. Yamamura, Top. Curr. Chem., 1983, 113, 145;
F. N. Diederich, Cyclophanes, The Royal Society of Chemistry,
Cambridge, 1991; F. Vo¨gtle, Cyclophane Chemistry, John Wiley &
Sons Ltd., Chichester, 1993; R. Gleiter and H. Hopf, Modern
Cyclophane Chemistry; Wiley-VCH Verlag, Weinheim, 2004.
9 C.-W. Chen and H. W. Whitlock, J. Am. Chem. Soc., 1978, 100, 4921.
10 A. Petitjean, R. G. Khoury, N. Kyritsakas and J.-M. Lehn, J. Am.
Chem. Soc., 2004, 126, 6637.
11 F.-G. Kla¨rner and B. Kahlert, Acc. Chem. Res., 2003, 36, 919.
12 M. Fokkens, C. Jasper, T. Schrader, F. Koziol, C. Ochsenfeld,
J. Polkowska, M. Lobert, B. Kahlert and F.-G. Kla¨rner, Chem.–Eur.
J., 2005, 11, 477.
13 S. C. Zimmerman and C. M. VanZyl, J. Am. Chem. Soc., 1987, 109,
7894; S. C. Zimmerman, K. W. Saionz and Z. Zeng, Proc. Natl. Acad.
Sci. U. S. A., 1993, 90, 1190.
14 S. C. Zimmerman, Z. Zeng, W. Wu and D. E. Reichert, J. Am. Chem.
Soc., 1991, 113, 183; S. C. Zimmerman, W. Wu and Z. Zeng, J. Am.
Chem. Soc., 1991, 113, 196; S. C. Zimmerman and Z. Zeng, J. Org.
Chem., 1990, 55, 4789; S. C. Zimmerman and W. Wu, J. Am. Chem.
Soc., 1989, 111, 8054.
15 S. C. Zimmerman, M. Mrksich and M. Baloga, J. Am. Chem. Soc.,
1989, 111, 8528; S. C. Zimmerman, C. M. VanZyl and G. S. Hamilton,
J. Am. Chem. Soc., 1989, 111, 1373.
16 S. C. Zimmerman, Top. Curr. Chem., 1993, 165, 71.
17 G. Lauri and P. A. Bartlett, J. Comput. Aided Mol. Des., 1994, 8, 51.
18 W. Yang, H. He and D. G. Drueckhammer, Angew. Chem., Int. Ed.,
2001, 40, 1714.
19 H. Huang and D. G. Drueckhammer, Chem. Commun., 2005, 5196;
Y. Zhu and D. G. Drueckhammer, J. Org. Chem., 2005, 70, 7755.
20 Y. Yang, D. Nesterenko, R. P. Trump, K. Yamaguchi, P. A. Bartlett
and D. G. Drueckhammer, J. Chem. Inf. Model., 2005, 45, 1820.
21 C. R. Johnson and T. D. Penning, J. Am. Chem. Soc., 1988, 110, 4726.
22 P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp,
T. Korn, I. Sapountzis and V. A. Vu, Angew. Chem., Int. Ed., 2003, 42,
4302.
23 Y. Kobayashi, M. Ito and J. Igarashi, Tetrahedron Lett., 2002, 43, 4829.
24 T. Ainai, M. Ito and Y. Kobayashi, Tetrahedron Lett., 2003, 44, 3983.
25 N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457.
26 T. Ishiyama, M. Murata and N. Miyaura, J. Org. Chem., 1995, 60,
7508.
27 A. Klapars and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124,
14844.
28 O. Baron and P. Knochel, Angew. Chem., Int. Ed., 2005, 44, 3133.
29 A. W. Schwabacher, S. Zhang and W. Davy, J. Am. Chem. Soc., 1993,
115, 6995.
Table 1 Dihedral angles for 1-substituted-2-phenylnaphthalenesa
Dihedral angle/u
X
C1–C2–C5–C4
C3–C2–C5–C6
Eopt 2 E62u /kJ mol21
H
Cl
a
45.2
68.8
45.2
65.8
21.89
21.21
Calculated at the HF/6-31G* level.
arrangement of p-stacking surfaces is preferred, and thus this
displacement of receptor surfaces may not be of great significance
if a fairly optimal displaced arrangement of the guest relative to
both receptor surfaces can be achieved. The current computing
power permits this issue to be addressed computationally at a
higher level than the molecular mechanics calculations reported for
the Zimmerman system. Table 1 shows the calculated dihedral
angles for 2-phenylnaphthalene and 1-chloro-2-phenylnaphthalene
as models for tweezers 11 and 12, respectively. Without the
chlorine, the dihedral angle is about 17u smaller than the ideal
while with the chlorine, it is about 5u greater than the ideal. This
indication that the chlorine substituent should provide a more
ideal dihedral angle provided the justification for its introduction.
The energetic cost of distorting the dihedral angle to the ideal is
moderately greater for the system without the chlorine, though the
difference in distortion energy is small relative to the difference in
angle of distortion. The cost of distorting both dihedral angles of
the receptor to the ideal would be double these values, and could
impede binding about three- and five-fold for 11 and 12,
respectively. While some distortion from the most stable dihedral
angle may occur, it seems unlikely that full distortion to the ideal
occurs but rather that binding occurs to a less ideal structure of the
tweezer. This seems likely to also be the case with the Zimmerman
tweezers. Our observation that the tweezer without chlorine binds
its guest about three-fold more strongly suggests that this issue is
not so important. The diminished binding of the chloro-substituted
tweezer may be attributed to the inductive effect of chlorine, which
results in weaker binding to an electron-deficient guest.
The molecular tweezer system described here is easily synthe-
sized and modular, such that various aromatic surfaces for guest
binding should be readily introduced. The comparison of the
receptors with and without chlorine suggest that precise tuning of
the dihedral angle between linker and binding groups is not
critical, which further simplifies the design and synthesis of
receptors based on this structure. The linker moiety may be
complementary to the conceptually similar Zimmerman system,
especially in regard to possible positions for introduction of other
functional groups to bind additional functionality of targeted guest
molecules. The general design may be widely applicable to
receptors for other aromatic compounds.
30 D. B. Smithrud, T. B. Wyman and F. Diederich, J. Am. Chem. Soc.,
1991, 113, 5420.
31 A. R. Bernardo, J. F. Stoddart and A. E. Kaifer, J. Am. Chem. Soc.,
1992, 114, 10624; T. T. Goodnow, M. V. Reddington, J. F. Stoddart
and A. E. Kaifer, J. Am. Chem. Soc., 1991, 113, 4335.
32 T. J. Shepodd, M. A. Peti and D. A. Dougherty, J. Am. Chem. Soc.,
1988, 110, 1983.
Financial support from the National Science Foundation
(CHE0213457) is gratefully acknowledged. NMR facilities were
supported by a grant from the National Science Foundation
(CHE0131146).
33 F. Grein, J. Phys. Chem. A, 2002, 106, 3823.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 2995–2997 | 2997