C O M M U N I C A T I O N S
meso-2b[OTf]2 (Figure 4) have been characterized. Reactions of
2a[OTf]2 with one equivalent of PMe3 give a 1:1 mixture of 2a
and 2b.
Cations 2a and 2b represent the first derivatives of acyclic
catena-tetraphosphorus dications and are new members of a scarcely
explored family of catena-phosphorus dications with topologies 3,14
4,15 5,16 6,12 and 7.17-22 The reductive coupling of 1a represents a
rational and potentially versatile, synthetic method to diversify and
extend catena-phosphorus chemistry. In addition, the recognition
of 2 as a bisphosphine complex of a catena-diphosphenium dication
(2′) is expected to provide a synthon to a vast array of new
polyphosphorus coordination complexes by the introduction of an
appropriate Lewis base.
Figure 3. 31P{1H} NMR spectrum (101.3 MHz) for 2a[OTf]2 with the
simulated (inverted) AA′BB′ spectrum for the meso-(S,R) isomer (δ )
-33, 24 ppm); * refers to peaks for the minor isomers (R,R and S,S) (δ )
-42, 22 ppm).
Acknowledgment. We thank the Natural Sciences and Engi-
neering Research Council of Canada, the Killam Foundation, the
Canada Research Chairs Program, the Canada Foundation for
Innovation, the Nova Scotia Research and Innovation Trust Fund,
and the Walter C. Sumner Foundation for funding.
Supporting Information Available: Experimental details, char-
acterization data, and CIF files. This material is available free of charge
References
(1) Baudler, M. Angew. Chem., Int. Ed. Engl. 1982, 21, 492-512.
(2) Baudler, M. Angew. Chem., Int. Ed. Engl. 1987, 26, 419-441.
(3) Baudler, M.; Glinka, K. Chem. ReV. 1993, 93, 1623-1667.
(4) Baudler, M.; Glinka, K. Chem. ReV. 1994, 94, 1273-1297.
(5) Geier, J.; Harmer, J.; Grutzmacher, H. Angew. Chem., Int. Ed. 2004, 43,
4093-4097.
(6) Burford, N.; Cameron, T. S.; Ragogna, P. J.; Ocando-Mavarez, E.; Gee,
M.; McDonald, R.; Wasylishen, R. E. J. Am. Chem. Soc. 2001, 123, 7947-
7948.
Figure 4. Solid-state structure of the dication in meso-2b[OTf]2: P1-P2
) 2.2041(9) Å, P2-P2′ ) 2.2317(12) Å.
(7) Burford, N.; Ragogna, P. J.; McDonald, R.; Ferguson, M. J. Am. Chem.
Soc. 2003, 125, 14404-14410.
over the R,R and S,S enantiomeric pair, which are assigned as the
minor component.
(8) Burford, N.; Dyker, C. A.; Decken, A. Angew. Chem., Int. Ed. 2005, 44,
2364-2367.
(9) Burford, N.; Dyker, C. A.; Lumsden, M. D.; Decken, A. Angew. Chem.,
Int. Ed. 2005, 44, 6196-6199.
(10) This shift is consistent with related chlorotriphenylphosphonium salts (see
ref 11 and references therein). Presence of the triflate counterion is
supported by 19F NMR. Three equivalents of TMSOTf are necessary to
facilitate the reductive coupling.
(11) Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G.; Sheffield, J. M.;
Thompson, G. M. J. Chem. Soc., Dalton Trans. 1997, 4823-4827.
(12) Schmidpeter, A.; Lochschmidt, S.; Karaghiosoff, K.; Sheldrick, W. S.
Chem. Commun. 1985, 1447-1448.
Ligand exchange reactions previously described for phosphino-
phosphonium cations7 such as 1a implicate the coordination
complex 1′. Application of this model to 2a defines the first example
of a bisphosphine catena-diphosphenium complex, represented by
2′.
(13) Karsch, H. H.; Witt, E. J. Organomet. Chem. 1997, 529, 151-169.
(14) Lochschmidt, S.; Muller, G.; Huber, B.; Schmidpeter, A. Z. Naturforsch.
1986, 41b, 444-454.
(15) Kilian, P.; Slawin, A. M. Z.; Woollins, J. D. J. Chem. Soc., Dalton Trans.
2006, 2175-2183.
(16) Heuer, L.; Ernst, L.; Schmutzler, R.; Schomburg, D. Angew. Chem., Int.
Ed. Engl. 1989, 28, 1507-1509.
(17) Alder, R. W.; Ganter, C.; Harris, C. J.; Orpen, A. G. J. Chem. Soc., Chem.
Commun. 1992, 1170-1172.
(18) Alder, R. W.; Ganter, C.; Harris, C. J.; Orpen, A. G. J. Chem. Soc., Chem.
Commun. 1992, 1172-1174.
(19) Alder, R. W.; Ellis, D. D.; Gleiter, R.; Harris, C. J.; Lange, H.; Orpen, A.
G.; Read, D.; Taylor, P. N. J. Chem. Soc., Perkin. Trans. 1 1998, 1657-
1668.
The validity of this model is exemplified in the exchange of both
Ph3P groups of 2a by PMe3. A white precipitate from the CH2Cl2
reaction mixture dissolves in CD3CN, and a new AA′BB′ spin
system (δ ) -52, 25 ppm), tentatively assigned to meso-2b[OTf]2,
is observed by 31P NMR spectroscopy as the major product. As
for 2a[OTf]2, the R,R and S,S isomers of 2b[OTf]2 (δ ) -56, 23
ppm) are present in solution (de ) 72%), and single crystals of
(20) Schomburg, D.; Bettermann, G.; Ernst, L.; Schmutzler, R. Angew. Chem.,
Int. Ed. Engl. 1985, 24, 975-976.
(21) Romakhin, A. S.; Palyutin, F. M.; Ignat’ev, Yu. A.; Nikitin, E. V.; Kargin,
Yu. M.; Litvinov, I. A.; Naumov, V. A. IzV. Akad. Nauk, Ser. Khim. 1990,
3, 664-669.
(22) Nikitin, E. V.; Romakhin, A. S.; Zagumennov, V. A.; Babkin, Yu. A.
Electrochim. Acta 1997, 42, 2217-2224.
JA062972Y
9
J. AM. CHEM. SOC. VOL. 128, NO. 30, 2006 9633