C O M M U N I C A T I O N S
Acknowledgment. We thank Prof. Yves Rubin, UCLA, for
helpful discussions. This research was partially supported by the
21st Century COE program, a Grant-in-Aid for Young Scientists
(B), and the Swiss National Fund.
Supporting Information Available: General procedures, spectral
data for compounds 1, 3, and 5-9. This material is available free of
Figure 2. Molecular structure of 1. Selected exptl13 [calcd14] distances
(Å) and angles (°): C1-C2 1.389(2) [1.390], C1-C6 1.396(2) [1.399], C1-
C1A 1.523(2) [1.530], C6-C6A 1.529(2) [1.530], C1A-C6A 1.614(2) [1.623];
References
C6-C1-C2 120.2(1) [120.0], C1-C2-C3 119.8(1) [120.0], C1-C6-C6A
94.0(1) [94.2], C6-C1-C1A 94.1(1) [94.2], C1-C1A-C6A 86.0(1) [85.8],
C6-C6A-C1A 85.7(1) [85.8].
(1) (a) Siegel, J. S. Angew. Chem., Int. Ed. Engl. 1994, 33, 1721-1723. (b)
Frank, N. L.; Siegel, J. S. In AdVances in Theoretically Interesting
Molecules; Thummel, R. P., Ed.; JAI Press: Greenwich, CT, 1995; Vol.
3, pp 209-260.
(2) (a) Nutakul, W.; Thummel, R. P.; Taggart, A. D. J. Am. Chem. Soc. 1979,
101, 770-771. (b) Doecke, C. W.; Garratt, P. J.; Shahriari-Zavareh, H.;
Zahler, R. J. Org. Chem. 1984, 49, 1412-1417. (c) Boese, R.; Bla¨ser,
D.; Billups, W. E.; Haley, M. M.; Maulitz, A. H.; Mohler, D. L.; Vollhardt,
K. P. C. Angew. Chem., Int. Ed. Engl. 1994, 33, 313-317.
(3) Camaggi, G. J. Chem. Soc. C 1971, 2382-2388. (b) Thummel, R. P.;
Korp, J. D.; Bernal, I.; Harlow, R. L.; Soulen, R. L. J. Am. Chem. Soc.
1977, 99, 6916-6918.
(4) Stanger, A.; Ashkenazi, N.; Boese, R.; Bla¨ser, D.; Stellberg, P. Chem.s
Eur. J. 1997, 3, 208-211.
(5) Kawase, T.; Minami, Y.; Nishigaki, N.; Okano, S.; Kurata, H.; Oda, M.
Angew. Chem., Int. Ed. 2005, 44, 316-319.
(6) (a) Diercks, R.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1986, 108, 3150-
3152. (b) Mohler, D. L.; Vollhardt, K. P. C.; Wolff, S. Angew. Chem.,
Int. Ed. Engl. 1990, 29, 1151-1153. (c) Boese, R.; Matzger, A. J.; Mohler,
D. L.; Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1995, 34, 1478-
1481.
(7) (a) Hosoya, T.; Hamura, T.; Kuriyama, Y.; Matsumoto, M.; Suzuki, K.
Synlett 2000, 520-522. (b) Hamura, T.; Hosoya, T.; Yamaguchi, H.;
Kuriyama, Y.; Tanabe, M.; Miyamoto, M.; Yasui, Y.; Matsumoto, T.;
Suzuki, K. HelV. Chim. Acta 2002, 85, 3589-3604.
(8) Hamura, T.; Ibusuki, Y.; Uekusa, H.; Matsumoto, T.; Suzuki, K. J. Am.
Chem. Soc. 2006, 128, 3534-3535.
(9) For details, see Supporting Information.
(10) The reaction was performed in dilute solution because of the poor solubility
of bromotosylate 5 in Et2O. Choice of the leaving group was also
important. For example, the reaction of the corresponding bromotriflate
gave low yield of the cycloadduct 6. The same situation was observed
for the third [2 + 2] cycloaddition of 7.
Figure 3. 13C NMR spectra of 2 (125 MHz, D2SO4, TMS as reference).
of 8a (syn/anti stereoisomers) was unequivocally assigned through
derivatization to the corresponding triketone 9 by two-step hy-
drolysis [(i) TsOH, CH2Cl2, MeOH, 25 °C; (ii) BF3‚Et2O, H2O,
-78 f 25 °C].9 This high regioselectivity (8a/8b ) 6:1) is striking
in view of the pseudo-symmetric oxygenation pattern of benzyne
B having two four-membered rings with high symmetry, where
the difference in both rings appears to be small. Cycloadduct 8
could also be converted to the symmetrical hexakis(dimethyl)acetal
1 under acidic conditions.
(11) Recently, related chemoselective generation of polyfunctionalized arynes
by I/Mg exchange of 2-iodophenyl sulfonates was reported. See: Sa-
pountzis, I.; Lin, W.; Fisher, M.; Knochel, P. Angew. Chem., Int. Ed. 2004,
43, 4364-4366.
Acetal 1 gave single crystals suitable for X-ray analysis (slow
crystallization, hexane, EtOAc, -15 °C). The central benzene ring
of 1 is planar, and the all internal angles are almost 120° (Figure
2).13 The average C-C bond length in the central benzene ring Q
) 1.394 Å (exptl) [1.395 Å (calcd)], and the endo/exo bond lengths
were essentially the same (endo 1.396 Å/exo 1.392 Å exptl) [endo
1.399 Å/exo 1.390 Å (calcd)]; δendo-exo ) 0.004 Å [0.009 Å].14
Experimental/computational structures show a decrease in Q and
δ as a function of the electronegativity of rim atoms in Ia-1-Ib:
Q ) 1.401, 1.394, 1.389 Å; δ ) 0.023, 0.004, -0.006 Å. Various
explanations exist for this effect.15 NMR computations for 1 (146.8,
114.6, 56.3 ppm) match well the observed 13C spectrum (141.0,
111.0, 51.7 ppm). Thus, structures and properties of these com-
pounds are well predicted computationally.
Hexaoxo-TCBB 2 was observed for the first time by cleavage
of hexaacetal 1 with concentrated sulfuric acid.16 The 13C NMR in
D2SO4 showed that all acetal functionalities were cleanly removed
to give quantitatively the characteristic peaks of the 1,2-dione
moiety (189 and 173 ppm) expected for ketone 2 [194.2 and 179.1
(calcd)]14 (Figure 3). Methanol (62 ppm) was generated during the
deprotection of 1.
The computationally predicted structure of 2 is planar with an
average benzene bond length Q ) 1.402 Å and a bond alternation
δ ) 0.0023 Å (exo ) 1.401(4) Å; endo ) 1.403(7) Å).14,17 Although
the related II with exo methylene groups displays essentially the
same average bond length Q ) 1.405 Å, the bond alternation δ )
0.045(8) Å (exo ) 1.382(1) Å; endo ) 1.427(9) Å) is much larger.
Notable also is the longer C-C bond length between the carbonyls
of 2 (1.592 Å) versus that between the methylenes of II (1.513 Å).
These trends are already seen in the simple cyclobutenes and will
form the basis for a future paper.
(12) Hamura, T.; Ibusuki, Y.; Sato, K.; Matsumoto, T.; Osamura, Y.; Suzuki,
K. Org. Lett. 2003, 5, 3551-3554.
(13) Crystallographic data for 1: C24H36O12, MW ) 516.53, colorless crystal,
0.38 × 0.20 × 0.08 mm, monoclinic, space group P21/c, Z ) 4, T )
93(2) K, a ) 12.3650(13), b ) 10.4112(7), c ) 22.0747(16) Å, â )
115.171(6)°, V ) 2571.9(4) Å3, λ(Mo KR) ) 0.71073 Å, µ ) 0.107 mm-1
.
Intensity data were collected on a Bruker SMART 1000 diffractometer.
The structure was solved by direct methods and refined by the full-matrix
least-squares on F2 (SHELXL97). A total of 45 417 reflections were
measured and 5897 were independent. Final R1 ) 0.0472, wR2 ) 0.1170
(4999 refs; I > 2σ(I)), and GOF ) 1.055 (for all data, R1 ) 0.0570, wR2
) 0.1218).
(14) Computations: B3LYP14a DFT and MP214b methods were employed, using
GAMESS14c and GAUSSIAN.14d As substantiated, previously optimized
geometries were obtained with B3LYP/cc-pVDZ.14e Subsequent single
point GIAO chemical shielding computations14f relative to TMS were
performed using the DZ(2d,p) basis set.14g Since B3LYP is known to
overestimate the deshielding contributions to the chemical shielding tensor
in cases when electron correlation is important, MP2 was also used. (a)
Lee, C.; Yang, W.; Parr, R. G. Phys. ReV. 1988, B37, 785-789. (b) Moller,
C.; Plesset, M. S. Phys. ReV. 1934, 46, 618. (c) Schmidt, M. W.; Baldridge,
K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki,
S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Elbert, S. T. J.
Comput. Chem. 1993, 14, 1347. (d) Frisch, M. J.; et al. GAUSSIAN 03;
Gaussian, Inc.: Pittsburgh, PA, 2003. (e) Dunning, T. H., Jr.; Hay, P. J.
In Modern Theoretical Chemistry; Schaefer, H. F., III, Ed.; Plenum: New
York, 1976; Vol. 3, p 1. (f) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-
5652. (g) Gauss, J. Chem. Phys. 1993, 99, 3629.
(15) (a) Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 1992, 114, 9583-
9587. (b) Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 2002, 124,
5514-5517. For another explanation, see: (c) Stanger, A. J. Am. Chem.
Soc. 1998, 120, 12034-12040.
(16) Rubin, Y.; Knobler, C. B.; Diederich, F. J. Am. Chem. Soc. 1990, 112,
1607-1617. Protonation of 2 has little effect on the chemical shift,
compared to the previously reported tetraketone derivative; see ref 8.
(17) Selected geometries for 2: C-Cendo 1.403(7) Å, C-Cexo 1.401(4) Å, Car-
CCO 1.519(3) Å, CCO-CCO 1.592(9) Å, CdO 1.188(5) Å; Car-Car-Car
120.0°, Car-Car-Cco 93.57°, Car-CCO-CCO 86.43°, CCO-CCO-OCO
136.69°.
JA064063E
9
J. AM. CHEM. SOC. VOL. 128, NO. 31, 2006 10033