Low-Spin Iron(III) Tetraphenylchlorin Complexes
cytochrome bd oxidase, the crystal structure of catalase HP
II from E. coli has been determined showing a heme d
prosthetic group with a cis-hydroxychlorin γ-spirolactone10
and a tyrosine as the proximal ligand.11 A heme d prosthetic
group with the same configuration has also been found in
the crystal structure of Penicillium Vitale catalase.12 Evidence
favoring coordination of a tyrosinate proximal ligand to the
chlorin iron of E. coli Hp ΙΙ catalase was previously proposed
by Dawson et al.13 Sulfmyoglobin 14,15 and sulfhemoglobin16
are also green heme proteins.
Since the reference paper reported by Holm and co-
workers in 1981,17 many investigations of the NMR and EPR
spectra of low-spin iron(III) complexes of reduced porphyrins
have been published very recently,18 by us19-22 and
others.15,23-32 The nature of the electronic ground state is
not always clear, and more information is needed with these
systems. Magnetic circular dichroism spectroscopy has also
been shown to be of great utility in the identification of
proximal and distal axial ligands in chlorin-containing
proteins.33,34 However, only a limited number of iron chlorin
complexes such as high-spin iron(II),35,36 high-spin iron-
(III),30,37 (µ-oxo)bis[(tetraphenylchlorin)iron(III)],38 and low-
spin iron(III) tetraphenylchlorin18 species have been inves-
tigated with X-ray crystallography. We now report 13C NMR
analyses of a series of low-spin six-coordinated iron(III)
tetraphenylchlorin complexes. The purpose of this study is
to extend the coverage of the electronic ground state of iron
chlorin models using 13C as NMR probes.
Experimental Section
Synthesis. Free base TPC,39 Fe(TPC)Cl,40 Fe(TPC)(CF3SO3),19
[Fe(TPC)(1-MeIm)2]Cl,20 and [Fe(TPC)(tBuNC)2](CF3SO3)19 were
prepared as described previously.
[Fe(TPC)(CN)2]NBu4 was prepared by the addition of 550 µL
of CD2Cl2 to the mixture consisting of Fe(TPC)Cl (30 µmol) and
2.5 equiv of tetrabutylammonium cyanide. The solution was taken
1
into an NMR sample tube for the H NMR measurement. The
1
characterization of all the complexes was done by means of H
and 13C NMR spectra as given in Results and Discussion.
[Fe(TPC)(4-CNPy)2](CF3SO3). Titration experiment revealed
that the addition of 10 equiv of 4-CNPy is enough for the com-
plete conversion of Fe(TPC)(CF3SO3) to [Fe(TPC)(4-CNPy)2]-
(CF3SO3). Thus, the sample for the NMR measurement was
prepared by the addition of 550 µL of CD2Cl2 to the mixture
consisting of Fe(TPC)(CF3SO3) (54 µmol) and 10 equiv of 4-CNPy
placed in a reaction vial. The solution was then taken into an NMR
sample tube.
(9) Chiu, J. T.; Loewen, P. C.; Switala, J.; Gennis., R. B.; Timkovich, R.
J. Am. Chem. Soc. 1989, 111, 7046-7050.
meso-13C-Enriched [Fe(TPC)(1-MeIm)2]Cl and [Fe(TPC)-
(CN)2]NBu4. meso-13C-enriched free base TPC was prepared using
13C-enriched benzaldehyde and pyrrole according to the literature.39
It was then converted to Fe(TPC)Cl by the literature method.40
meso-13C-enriched [Fe(TPC)(1-MeIm)2]Cl was prepared by the
addition of 550 µL of CD2Cl2 to the mixture consisting of meso-
13C-enriched Fe(TPC)Cl (14 µmol) and 4 equiv of 1-MeIm placed
in a reaction vial. meso-13C-enriched [Fe(TPC)(CN)2]NBu4 was
similarly prepared from 4 equiv of tetrabutylammonium cyanide
and meso-13C-enriched Fe(TPC)Cl(14 µmol).
(10) Andersson, L. A.; Sotiriou, C.; Chang, C. K.; Loehr, T. M. J. Am.
Chem. Soc. 1987, 109, 258-264.
(11) Bravo, J.; Verdaguer, N.; Tormo, J.; Betzel, C.; Switala, J.; Loewen,
P. C.; Fita, I. Structure 1995, 3, 491-502.
(12) Murshudov, G. N.; Grebenko, A. I.; Barynin, V.; Dauter, Z.; Wilson,
K. S.; Vainshtein, B. K.; Melik-Adamyan, W.; Bravo, J.; Ferra´n, J.
M.; Ferrer, J. C.; Switala, J.; Loewen, P. C.; Fita, I. J. Biol. Chem.
1996, 271, 8863-8868.
(13) Dawson, J. H.; Bracete, A. M.; Huff, A. M.; Kadkhodayan, S.; Zeitler,
C. M.; Sono, M.; Chang, C. K.; Loewen, P. C. FEBS Lett. 1991, 295,
123-126.
(14) Bondoc, L. L.; Chau, M. H.; Price, M. A.; Timkovich, R. Biochemistry
1986, 25, 8458-8466.
meso-13C-Enriched Fe(TPC)ClO4. To the mixture of AgClO4
(69 µmol) and Fe(TPC)Cl (57 µmol) was added 10 mL of THF.
The solution was stirred for 20 min at room temperature. After
evaporation of the solvent, dichloromethane (3 mL) was added to
the resultant solid and the suspension was filtered to remove AgCl.
This procedure was repeated twice. The filtrate was evaporated,
and the resultant solid was dried in vacuo for 4 h at 25 °C. The
prechlorate salt, Fe(TPC)ClO4, thus obtained was used without
further purification.
(15) Chatfield, M. J.; La Mar, G. N.; Parker, W. O.; Smith, K. M.; Leung,
H.-K.; Morris, I. K. J. Am. Chem. Soc. 1988, 110, 6352-6358.
(16) Chatfield, M. J.; La Mar, G. N. Arch. Biochem. Biophys. 1992, 295,
289-296.
(17) Stolzenberg, A. M.; Strauss, S. H.; Holm, R. H. J. Am. Chem. Soc.
1981, 103, 4763-4778.
(18) Kobeissi, M.; Toupet, L.; Simonneaux, G. Inorg. Chem. 2001, 40,
4494-4499.
(19) Simonneaux, G.; Kobeissi, M. J. Chem. Soc., Dalton Trans. 2001,
1587-1592.
(20) Simonneaux, G.; Kobeissi, M.; Toupet, L. J. Chem. Soc, Dalton Trans.
2002, 4011-4016.
Caution! Perchlorate salts are potentially explosive when heated
or shocked. Handle them in milligram quantities with care.
(21) Kobeissi, M.; Simonneaux, G. Inorg. Chim. Acta 2003, 343, 18-26.
(22) Simonneaux, G.; Kobeissi, M.; Toupet, L. Inorg. Chem. 2003, 42,
1644-1651.
(23) Muhoberac, B. B. Arch. Biochem. Biophys. 1984, 233, 682-697.
(24) Morishima, I.; Fujii, H.; Shiro, Y. J. Am. Chem. Soc. 1986, 108, 3858-
3860.
(33) Huff, A. M.; Chang, C. K.; Cooper, D. K.; Smith, K. M.; Dawson, J.
H. Inorg. Chem. 1993, 32, 1460-1466.
(34) Bracete, A. M.; Kadkhodayan, S.; Sono, M.; Huff, A. M.; Zhuang,
C.; Cooper, D. K.; Smith, K. M.; Chang, C. K.; Dawson, J. H. Inorg.
Chem. 1994, 33, 5042-5049.
(25) Licoccia, S.; Chatfield, M. J.; La Mar, G. N.; Smith, K. M.; Mansfield,
K. E.; Anderson, R. R. J. Am. Chem. Soc. 1989, 111, 6087-6093.
(26) Keating, K. A.; de Ropp, J. S.; La Mar, G. N.; Balch, A. L.; Shiau, F.
Y.; Smith, K. M. Inorg. Chem. 1991, 30, 3258-3263.
(27) Ozawa, S.; Watanabe, Y.; Morishima, I. Inorg. Chem. 1992, 31, 4042-
4043.
(35) Strauss, S. H.; Silver, M. E.; Ibers, J. A. J. Am. Chem. Soc. 1983,
105, 4108-4109.
(36) Strauss, S. H.; Silver, M. E.; Long, K. M.; Thompson, R. G.; Hudgens,
R. A.; Spartalian, K.; Ibers, J. A. J. Am. Chem. Soc. 1985, 107, 4207-
4215.
(28) Ozawa, S.; Watanabe, Y.; Morishima, I. J. Am. Chem. Soc. 1994, 116,
5832-5838.
(37) Jayaraj, K.; Gold, A.; Austin, R. N.; Ball, L. M.; Terner, J.; Mandon,
D.; Weiss, R.; Fischer, J.; DeCian, A.; Bill, E.; Mu¨ther, M.;
Schu¨nemann, V.; Trautwein, A. X. Inorg. Chem. 1997, 36, 4555-
4566.
(38) Strauss, S. H.; Pawlik, M. J.; Skowyra, J.; Kennedy, J. R.; Anderson,
O. P.; Spartalian, K.; Dye, J. L. Inorg. Chem. 1987, 26, 724-730.
(39) Whitlock, H. W., Jr.; Hanauer, R.; Oester, M. Y.; Bower, B. K. J.
Am. Chem. Soc. 1969, 91, 7485-7489.
(40) Feng, D.; Ting, Y.-S.; Ryan, M. D. Inorg. Chem., 1985, 24, 612-
617.
(29) Jayaraj, K.; Gold, A.; Austin, R. N.; Mandon, D.; Weiss, R.; Terner,
J.; Bill, E.; Mu¨ther, M.; Trautwein, A. X. J. Am. Chem. Soc. 1995,
117, 9079-9080.
(30) Wojaczyn´ski, J.; Latos-Graz˘yn´ski, L.; Głowiak, T. Inorg. Chem. 1997,
36, 6299-6306.
(31) Astashkin, A. V.; Raitsimring, A. M.; Walker, F. A. J. Am. Chem.
Soc. 2001, 123, 1905-1913.
(32) Cai, S.; Lichtenberger, L.; Walker, F. A. Inorg. Chem. 2005, 44, 1890-
1903.
Inorganic Chemistry, Vol. 45, No. 17, 2006 6729