A R T I C L E S
Duncan et al.
to use. Absolute ethanol (Fisher Scientific), as well as NMR solvents,
was used as received. ZnCl2 was dried by heating under vacuum and
stored under N2. The catalysts, tetrakis(triphenylphosphine)palladium
(Pd(PPh3)4), tris(dibenzylideneacetone)dipalladium (Pd2dba3), and triph-
enylarsine (AsPh3) were purchased from Strem Chemicals.
on interrogating the photophysics of covalently linked as-
semblies of porphyrins and related polypyrrolic macrocycles
where chromophore-chromophore electronic interactions give
rise to extensively delocalized electronically excited
states.12,13,35,36,43-62
Chemical shifts for 1H NMR spectra are reported relative to residual
protium in the deuterated solvents (CDCl3, δ ) 7.24 ppm; pyridine-d5,
δ ) 7.19 ppm, C6D6, δ ) 7.15 ppm). The number of attached protons
is found in parentheses following the chemical shift value. Flash column
chromatography was performed on the benchtop, using silica gel (230-
400 mesh) obtained from EM Science. High-resolution electrospray
mass spectra were acquired at the Mass Spectrometry Center at the
University of Pennsylvania. MALDI-TOF mass spectroscopic data were
obtained with a Perspective Voyager DE instrument in the Laboratory
of Dr. Virgil Percec (Department of Chemistry, University of Penn-
sylvania). Samples were prepared as micromolar solutions in THF, and
dithranol (Aldrich) was utilized as the matrix. Fast atom bombardment
(FAB) mass spectrometry analyses were performed at the Mass
Spectrometry Center at Drexel University.
While considerable progress has been made with respect to
understanding the fundamental excited-state dynamics of strongly
coupled porphyrinoid compounds,35,49,62 little is known regarding
the corresponding excited-state delocalization-, electron-, and
energy-transfer dynamics of related systems that possess open
d-electron shells. Here, we report the synthesis, spectroscopy,
and potentiometric and excited-state dynamical studies of
5-[(10,20-di-(((4-ethyl ester)methylene-oxy)phenyl)porphinato)-
zinc(II)]-[5′-[(10′,20′- di-(((4-ethyl ester)methylene-oxy)phe-
nyl)porphinato)iron(III)-chloride]ethyne (PZn-PFe-Cl), along
with a series of related compounds that possess a range of metal
axial ligation environments. Application of femtosecond (fs)
transient absorption spectroscopy shows that the evolution of
the initially prepared electronically excited states of these
supermolecular, meso-to-meso ethyne-bridged PZn-PFe(III)
compounds is governed by the axial ligation state of the
(porphinato)iron center.
Instrumentation. Electronic spectra were recorded on an OLIS UV/
vis/near-IR spectrophotometry system that is based on the optics of a
Cary 14 spectrophotometer. NMR spectra were recorded on either 250
MHz AC-250 or 360 MHz DMX-360 Bru¨ker spectrometers. Cyclic
voltammetric experiments were performed with an EG&G Princeton
Applied Research model 273A potentiostat/galvanostat. A single-
compartment electrochemical cell with glassy carbon working electrode
was used. Steady-state fluorescence emission spectra were recorded
on a SPEX Fluorolog 3 spectrometer that utilized a T-channel
configuration and PMT/InGaAs/Extended-InGaAs detectors; these
spectra were corrected using the spectral output of a calibrated light
source supplied by the National Bureau of Standards.
Experimental Section
Materials. All manipulations were carried out under nitrogen
previously passed through an O2 scrubbing tower (Schweitzerhall R3-
11 catalyst) and a drying tower (Linde 3 Å molecular sieves) unless
otherwise stated. Air-sensitive solids were handled in a Braun 150-M
glovebox. Standard Schlenk techniques were employed to manipulate
air-sensitive solutions. Methylene chloride (CH2Cl2) and tetrahydrofuran
(THF) were distilled from CaH2 and K/4-benzoylbiphenyl, respectively,
under N2. Nitrogenous ligands were purchased from Aldrich and used
as received. Acetone was dried over K2CO3 overnight and filtered prior
Magnetic Susceptibility Measurements and Ferric Spin State
Determination. The spin states of iron(III) in the monomeric complexes
were determined by the Evans method.63 These measurements were
carried out in 5-mm diameter NMR tubes that featured 1-mm diameter
(20) Kampas, F. J.; Yamashita, K.; Fajer, J. Nature 1980, 284, 40-42.
(21) Gregg, B. A.; Fox, M. A.; Bard, A. J. J. Phys. Chem. 1990, 94, 1586-
1598.
(41) Kobuke, Y.; Ogawa, K. Bull. Chem. Soc. Jpn. 2003, 76, 689-708.
(42) O’Neill, M.; Kelly, S. M. AdV. Mater. 2003, 15, 1135-1146.
(43) Arnold, D. P.; Heath, G. A. J. Am. Chem. Soc. 1993, 115, 12197-12198.
(44) Anderson, H. L. Inorg. Chem. 1994, 33, 972-981.
(45) Crossley, M. J.; Govenlock, L. J.; Prashar, J. K. J. Chem. Soc., Chem.
Commun. 1995, 2379-2380.
(22) Miller, J. S.; Epstein, A. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 385-
415.
(23) Arnold, D. P.; Manno, D.; Micocci, G.; Serra, A.; Tepore, A.; Valli, L.
Langmuir 1997, 13, 5951-5956.
(46) Angiolillo, P. J.; Lin, V. S.-Y.; Vanderkooi, J. M.; Therien, M. J. J. Am.
Chem. Soc. 1995, 117, 12514-12527.
(24) Ikkala, O.; ten Brinke, G. Science 2002, 295, 2407-2409.
(25) Ostrowski, J. C.; Susumu, K.; Robinson, M. R.; Therien, M. J.; Bazan, G.
AdV. Mater. 2003, 15, 1296-1300.
(47) Wytko, J.; Berl, V.; McLaughlin, M.; Tykwinski, R. R.; Schreiber, M.;
Diederich, F.; Boudon, C.; Gisselbrecht, J.-P.; Gross, M. HelV. Chim. Acta
1998, 81, 1964-1977.
(26) Hirata, N.; Lagref, J.-J.; Palomares, E. J.; Durrant, J. R.; Nazeeruddin, M.
K.; Gratzel, M.; Di Censo, D. Chem. Eur. J. 2004, 10, 595-602.
(27) Leclere, P.; Surin, M.; Jonkheijm, P.; Henze, O.; Schenning, A. P. H. J.;
Biscarini, F.; Grimsdale, A. C.; Feast, W. J.; Meijer, E. W.; Mullen, K.;
Bredas, J. L.; Lazzaroni, R. Eur. Polym. J. 2004, 40, 885-892.
(28) O’Neil, M. P.; Niemczyk, M. P.; Svec, W. A.; Gosztola, D.; Gaines, G.
L., III ; Wasielewski, M. R. Science 1992, 257, 63-65.
(29) Anderson, H. L.; Martin, S. J.; Bradley, D. D. C. Angew. Chem., Int. Ed.
Engl. 1994, 33, 655-657.
(48) Qureshi, F. M.; Martin, S. J.; Long, X.; Bradley, D. D. C.; Henari, F. Z.;
Blau, W. J.; Smith, E. C.; Wang, C. H.; Kar, A. K.; Anderson, H. L. Chem.
Phys. 1998, 231, 87-94.
(49) Kumble, R.; Palese, S.; Lin, V. S. Y.; Therien, M. J.; Hochstrasser, R. M.
J. Am. Chem. Soc. 1998, 120, 11489-11498.
(50) Arnold, D. P.; Heath, G. A.; James, D. A. J. Porphyrins Phthalocyanines
1999, 3, 5-31.
(51) Jiang, B.; Yang, S.-W.; Barbini, D. C.; Jones, W. E. J. Chem. Commun.
1998, 213-214.
(30) DiMagno, S. G.; Lin, V. S.-Y.; Therien, M. J. J. Am. Chem. Soc. 1993,
115, 2513-2515.
(52) Shultz, D. A.; Lee, H.; Kumar, R. K.; Gwaltney, K. P. J. Org. Chem. 1999,
64, 9124-9136.
(31) Debreczeny, M. P.; Svec, W. A.; Wasielewski, M. R. Science 1996, 274,
584-587.
(53) Paolesse, R.; Jaquinod, L.; Della Sala, F.; Nurco, D. J.; Prodi, L.; Montalti,
M.; Di Natale, C.; D’Amico, A.; Di Carlo, A.; Lugli, P.; Smith, K. M. J.
Am. Chem. Soc. 2000, 122, 11295-11302.
(32) Wagner, R. W.; Lindsey, J. S.; Seth, J.; Palaniappan, V.; Bocian, D. F. J.
Am. Chem. Soc. 1996, 118, 3996-3997.
(33) LeCours, S. M.; Guan, H.-W.; DiMagno, S. G.; Wang, C. H.; Therien, M.
J. J. Am. Chem. Soc. 1996, 118, 1497-1503.
(54) Kuebler, S. M.; Denning, R. G.; Anderson, H. L. J. Am. Chem. Soc. 2000,
122, 339-347.
(34) Priyadarshy, S.; Therien, M. J.; Beratan, D. N. J. Am. Chem. Soc. 1996,
118, 1504-1510.
(55) Shediac, R.; Gray, M. H. B.; Uyeda, H. T.; Johnson, R. C.; Hupp, J. T.;
Angiolillo, P. J.; Therien, M. J. J. Am. Chem. Soc. 2000, 122, 7017-7033.
(56) Fletcher, J. T.; Therien Michael, J. J. Am. Chem. Soc. 2000, 122, 12393-
12394.
(35) O’Keefe, G. E.; Denton, G. J.; Harvey, E. J.; Phillips, R. T.; Friend, R. H.;
Anderson, H. L. J. Chem. Phys. 1996, 104, 805-811.
(36) Beljonne, D.; O’Keefe, G. E.; Hamer, P. J.; Friend, R. H.; Anderson, H.
L.; Bredas, J. L. J. Chem. Phys. 1997, 106, 9439-9460.
(37) Karki, L.; Vance, F. W.; Hupp, J. T.; LeCours, S. M.; Therien, M. J. J.
Am. Chem. Soc. 1998, 120, 2606-2611.
(57) Tsuda, A.; Osuka, A. Science 2001, 293, 79-82.
(58) Screen, T. E. O.; Thorne, J. R. G.; Denning, R. G.; Bucknall, D. G.;
Anderson, H. L. J. Am. Chem. Soc. 2002, 124, 9712-9713.
(59) Fletcher, J. T.; Therien Michael, J. J. Am. Chem. Soc. 2002, 124, 4298-
4311.
(38) Lukas, A. S.; Miller, S. E.; Wasielewski, M. R. J. Phys. Chem. B 2000,
104, 931-940.
(60) Fletcher, J. T.; Therien, M. J. Inorg. Chem. 2002, 41, 331-341.
(61) Susumu, K.; Therien, M. J. J. Am. Chem. Soc. 2002, 124, 8550-8552.
(62) Rubtsov, I., V.; Susumu, K.; Rubtsov, G. I.; Therien, M. J. J. Am. Chem.
Soc. 2003, 125, 2687-2696.
(39) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem., Int.
Ed. 2000, 39, 3348-3391.
(40) Uyeda, H. T.; Zhao, Y.; Wostyn, K.; Asselberghs, I.; Clays, K.; Persoons,
A.; Therien, M. J. J. Am. Chem. Soc. 2002, 124, 13806-13813.
(63) Evans, D. F.; James, T. A. J. Chem. Soc., Dalton Trans. 1979, 723-726.
9
10424 J. AM. CHEM. SOC. VOL. 128, NO. 32, 2006