S. Ghosh et al. / Tetrahedron Letters 47 (2006) 6041–6044
6043
Ramsden, N. G.; Witty, D. R. Tetrahedron 1989, 45, 319–
326; (c) Altenbach, H. J.; Himmeldirk, K. Tetrahedron:
Asymmetry 1995, 6, 1077–1080; (d) Koulocheri, S. D.;
Pitsinos, E. N.; Haroutounian, S. A. Synthesis 2002, 1707–
1710; (e) Knight, J. G.; Tchabanenko, K. Tetrahedron
2003, 59, 281–286.
diol 4, as expected, since the b-face is blocked by the
bulky NCbz group as well as the adjacent C4-b oxy-
gen.15 Finally, diol 4 was converted into D-1-deoxy-
gulonojirimyan 2 following the same set of reactions
as in Scheme 3 (for 3 to 1). The spectroscopic and
analytical data of 2 were in good agreement with the
literature data.9g,i,18
8. For recent syntheses, see: (a) Kato, A.; Kato, N.; Kano,
E.; Adachi, I.; Ikeda, K.; Yu, L.; Okamoto, T.; Banba, Y.;
Ouchi, H.; Takahata, H.; Asano, N. J. Med. Chem. 2005,
48, 2036–2044; (b) also see Ref. 1g.
In conclusion, we have devised a strategy for the synthe-
sis of deoxyazasugars from the commercially available,
cheap starting material D-glucose. Making library
synthesis and a study of their biological activities are
currently under progress and will be reported in due
course.
9. For the first synthesis of deoxygulonojirimycin, see: (a)
Leontein, K.; Lindberg, B.; Lonngren, J. Acta Chem.
Scand. B 1982, 36, 515–518; For more recent synthesis,
see: (b) Le Merrer, Y.; Poitout, L.; Depezay, J.-C.;
Dosbaa, I.; Geoffroy, S.; Foglietti, M.-J. Bioorg. Med.
Chem. 1997, 5, 519–533; (c) Liao, L.-X.; Wang, Z.-M.;
Zhou, W.-S. Tetrahedron: Asymmetry 1999, 10, 3649–
3657; (d) Haukaas, M. H.; O’Doherty, G. A. Org. Lett.
2001, 3, 401–404; (e) Ruiz, M.; Ojea, V.; Ruanova, T. M.;
Quintela, J. M. Tetrahedron: Asymmetry 2002, 13, 795–
799; (f) Singh, O. V.; Han, H. Tetrahedron Lett. 2003, 44,
2387–2391; (g) Takahata, H.; Banba, Y.; Ouchi, H.;
Nemoto, H. Org. Lett. 2003, 5, 2527–2529; (h) Amat, M.;
Acknowledgments
We are thankful to CSIR (S.K.D.) and UGC (J.S.), New
Delhi, for research fellowships. We are also thankful to
Dr. T. K. Chakraborty, Dr. A. C. Kunwar and the
Director, IICT for their support and encouragement.
´
Huguet, M.; Llor, N.; Bassas, O.; Gomez, A. M.; Bosch,
J.; Badia, J.; Baldomab, L.; Aguilar, J. Tetrahedron Lett.
2004, 45, 5355–5358; (i) Pyun, S.-J.; Lee, K.-Y.; Oh, C.-H.;
Joo, J.-E.; Cheon, S.-H.; Ham, W.-H. Tetrahedron 2005,
61, 1413–1416.
References and notes
10. Schmidt, O. T. Methods Carbohydr. Chem. 1962, 2, 318–
325.
11. Yoshimura, Y.; Endo, M.; Miura, S.; Sakata, S. J. Org.
Chem. 1999, 64, 7912–7920.
12. Garegg, P. G.; Samuclson, B. Synthesis 1979, 813–814.
13. (a) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199–
2238; (b) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res.
2001, 34, 18–19; (c) Fu¨rstner, A. Angew. Chem., Int. Ed.
2000, 39, 3012–3043.
14. (a) Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron Lett.
1983, 24, 3943–3946; For recent review, see: (b) Cha, J. K.;
Kim, N.-S. Chem. Rev. 1995, 95, 1761–1795.
1. Reviews: (a) Hughes, A. B.; Rudge, A. J. Nat. Prod. Rep.
1994, 135–162, and references cited therein; (b) Ganem, B.
Acc. Chem. Res. 1996, 29, 340–347; (c) Sears, P.; Wong,
C.-H. Angew. Chem., Int. Ed. 1999, 38, 2300–2324; (d)
Heightman, T. D.; Vasella, A. T. Angew. Chem., Int. Ed.
1999, 38, 750–770; (e) Meyers, A. I.; Anders, C. J.; Resek,
J. E.; Woodall, C. C.; McLaughlin, M. A.; Lee, P. H.;
Price, D. A. Tetrahedron 1999, 55, 8931–8952; (f) Asano,
N. Glycobiology 2003, 13, 93; (g) Kamyar, A.; Akmal, B.
Tetrahedron: Asymmetry 2005, 16, 1239–1287.
2. Butters, T. D.; Dwek, R. A.; Platt, F. M. Chem. Rev. 2000,
100, 4683–4696.
15. The structures of 3 and 4 were confirmed by extensive
NMR studies at 500 MHz in DMSO-d6 at 30 °C. The
assignments were carried out with the help of 1H and
double quantum filtered correlation spectroscopy (DQF-
COSY) experiments. Nuclear Overhauser effect spectros-
copy (NOESY) experiments provided information about
3. (a) Yoshikuni, Y.; Ezure, Y.; Seto, T.; Mori, K.; Wata-
nabe, M.; Enomoto, H. Chem. Pharm. Bull. 1989, 37, 106–
109; (b) Kimura, M.; Chen, F.-J.; Nakashima, N.;
Kimura, I.; Asano, N.; Koya, S. J. Trad. Med. 1995, 12,
214–219; (c) Horii, S.; Fukase, H.; Matsuo, T.; Kameda,
Y.; Asano, N.; Matsui, K. J. Med. Chem. 1986, 29, 1038–
1046; (d) Robinson, K. M.; Begovic, M. E.; Reinhart,
B. L.; Heineke, E. W.; Ducep, J.-B.; Kastner, P. R.;
Marshall, F. N.; Danzin, C. Diabetes 1991, 40, 825–830.
4. (a) Nishimura, Y. Curr. Top. Med. Chem. 2003, 3, 575–
591; (b) Hakomori, S. Cancer Res. 1985, 45, 2405–2414;
(c) Nishimura, Y. In Studies in Natural Products Chem-
istry; Atta-ur-Rahman, Ed.; Elsevier Science: B.V.:
Amsterdam, 1995; Vol. 16, pp 75–121; (d) Gross, P. E.;
Baker, M. A.; Carver, J. P.; Dennis, J. W. Clin. Cancer
Res. 1995, 1, 935–944.
3
the proximity of the protons. In 3, JH4–H5 = 2.6,
3
3
3
0
JH5–H6 = 3.0, JH6ꢀH7 ¼ 5:8, and JH6–H7 = 10.5Hz,
and characteristic NOE correlations between H3–C5OH,
H7–C5OH, H3–H7, H4–H6, and H4–CH3proR confirm
the structure in Figure A. The six-membered ring adopts a
3C6 chair form. For 4, JH4–H5 = 4.0, JH6–H7 = 3.8, and
3
3
3
0
JH6–H7 ¼ 7:8 Hz and characteristic NOE correlations
between H3–H70, H3–C5OH, H70–C5OH, H1–H6, H2–
H6, H3–CH3proR, and H4–CH3proR confirm the struc-
ture given in Figure B. The nuclear Overhauser correla-
tions for 3 and 4 are shown in Figures A and B,
respectively.
5. (a) Greimel, P.; Spreitz, J.; Stutz, A. E.; Wrodnigg, T. M.
¨
Curr. Top. Med. Chem. 2003, 3, 513–523; (b) Taylor, D.
L.; Sunkara, P.; Liu, P. S.; Kang, M. S.; Bowlin, T. L.;
Tyms, A. S. AIDS 1991, 5, 693–698.
H1
1
H
3
H
6. Fleet, G. W. J.; Karpas, A.; Dwek, R. A.; Fellows, L. E.;
Tyms, A. S.; Petursson, S.; Namgoong, S. K.; Ramsden,
N. G.; Smith, P. W.; Son, J. C.; Wilson, F.; Witty, D. R.;
Jacob, G. S.; Rademacher, T. W. FEBS Lett. 1988, 237,
128–132.
7. For syntheses of azasugars and analogues, see for exam-
ple: (a) Fleet, G. W. J.; Ramsden, N. G.; Witty, D. R.
Tetrahedron Lett. 1988, 29, 2871–2874; (b) Fleet, G. W. J.;
H2
O
CH3pro-S
CH3
pro-S
OH
O
H6
O
O
2
H
H5
N
H7
H4
H5
HO
HO
pro-R
O
O
CH3
pro-R
CH3
H7
N-CBz
CBz
'
H7
OH
'
4
H
H3
H7
H6
Figure A
Figure B