A Diiron(iii) Compound with an Unusual Coordination Environment
A
FULL PAPER
Reduction of 1 with Zn/Hg: A solution of 1 in dry and degassed CH3CN
(100 mg in 100 mL) was transferred into a Schlenk tube containing a few
drops of 10% Zn/Hg. The medium was stirred and the color turned
bright orange within 10 min. It was then filtered, concentrated, and a
bright orange solid was obtained upon addition of diethyl ether. The
solid was washed several times with dry and degassed diethyl ether and
dried under vacuum. All spectroscopic features (UV/Vis, cyclic voltam-
metry, 1H NMR) are identical to those obtained from a clean sample of
2.
Both organisations are gratefully acknowledged for their support. The
authors thank Professor Richard Welter and Laboratoire DECOMET for
the X-ray diffraction studies. We wish to give special thanks to Dr. Remy
Louis, for his constant encouragement and support. The Institut de
Chimie, CNRS and ULP are gratefully acknowledged for financial sup-
port.
[1]A. G. Blackman, Polyhedron 2005, 24, 1–39.
[2]Y. Zang, J. Kim, Y. Dong, E. C. Wilkinson, E. H. Appelman, L.
Que, Jr., J. Am. Chem. Soc. 1997, 119, 4197–4205.
[3]K. Chen, L. Que, Jr., J. Am. Chem. Soc. 2001, 123, 6327–6337.
[4]M. P. Jensen, S. J. Lange, M. P. Mehn, E. L. Que, L. Que, Jr., J. Am.
Chem. Soc. 2003, 125, 2113–2128.
[5]C. L. Chuang, O. Dos Santos, X. Xu, J. W. Canary, Inorg. Chem.
1997, 36, 1967–1972.
[6]M. Harata, K. Jitsukawa, H. Masuda, H. Einaga, Chem. Lett. 1995,
61–62.
[7]S. Ogo, S. Wada, Y. Watanabe, M. Iwase, A. Wada, M. Harata, K.
Jitsukawa, H. Masuda, H. Einaga, Angew. Chem. 1998, 110, 2198–
2200; Angew. Chem. Int. Ed. 1998, 37, 2102–2104.
[8]K. Rudzka, A. M. Arif, L. M. Berreau, Inorg. Chem. 2005, 44, 7234–
7242.
Oxygenation of 2: preparation of 3: Complex 2 (50 mg) was dissolved in
dry and degassed CH3CN (50 mL). Upon exposure to dry dioxygen, the
medium turned dark violet within a fraction of a second. The solution
was concentrated and a black solid was obtained upon addition of diethyl
ether. The solid was washed with three portions (50 mL each) of diethyl
ether, dried under vacuum, and recrystallized from CH3CN/diethyl ether
to give 20 mg of product The three portions of diethyl ether used for
washing were collected, the solvent evaporated. The corresponding
1H NMR spectrum showed no evidence for the presence of any free
ligand amongst the numerous and unassignable signals in the range d=
3–8 ppm. Elemental analysis calcd (%) for C30H22Cl2Fe2N4O4: C 52.55, H
3.21; found: C 52.90, H 3.62; UV/Vis (room temperature): l (e)=266.0
(12.67), 300.0 (14.64), 350.0 (shoulder), 590.0 nm (1.10[103 mmolꢀ1 cm2]).
The 1H NMR spectrum is supplied in the Supporting Information. No
well defined signals can be observed in the paramagnetic region.
[9]Z. He, P. J. Chaimungkalanont, D. C. Craig, S. B. Colbran, J. Chem.
Soc. Dalton Trans. 2000, 1419–1429.
X-ray analysis
Single crystals of [(BCATTPA)FeIIICl2]·Et2O and [(BCATTPA)-
FeIII2Cl2]·CH3CN were mounted on a Nonius Kappa-CCD area detector
diffractometer (MoKa radiation; l=0.71073 ). Quantitative data were
obtained at 173 K for both complexes. The complete conditions of data
collection (Denzo software) and structure refinements are given as Sup-
porting Information. The cell parameters were determined from reflec-
tions taken from one set of 10 frames (1.08 steps in phi angle), each at
20 s exposure. The structures were solved by direct methods (SIR97) and
refined against F2 using the SHELXL97 software suite (Kappa CCD Op-
eration Manual, Nonius B.V., Delft, The Netherlands, 1997; G. M. Shel-
drick, SHELXL97, Program for the refinement of crystal structures, Uni-
versity of Gçttingen, Germany, 1997). The absorption was not corrected.
All non-hydrogen atoms were refined anisotropically. Hydrogen atoms
were generated according to stereochemistry and refined using a riding
model in SHELXL97.
[10]Z. He, D. C. Craig. , S. B. Colbran, J. Chem. Soc. Dalton Trans.
2002, 4224–4235.
[11]Z. He, S. B. Colbran, D. C. Craig, Chem. Eur. J. 2003, 9, 116–129.
[12]A. Diebold, K. H. Hagen, Inorg. Chem. 1998, 37, 215–223.
[13]M. Costas, K. Chen, L. Que, Jr., Coord. Chem. Rev. 2000, 517–544.
[14]M. Costas, M. Mehn, M. P. Jensen, L. Que, Jr., Chem. Rev. 2004,
104, 939–986.
[15]E. I. Solomon, T. C. Brunold, M. I. Davis, J. N. Kemsley, S.-K. Lee,
N. Lehnert, F. Neese, A. J. Skulan, Y. S. Yang, J. Zhou, Chem. Rev.
2000, 100, 235–350.
[16]H. G. Jang, D. D. Cox, L. Que, Jr., J. Am. Chem. Soc. 1991, 113,
9200–9204.
[17]J. H. Lim, T. H. Park, H. J. Lee, K. B. Lee, H. G. Jang, Bull. Korean
Chem. Soc. 1999, 20, 1428–1432.
[18]F. Pattus, M. A. Abdallah, J. Chin. Chem. Soc. 2000, 47, 1–20.
[19]C. Belle, J.-L. Pierre, E. Saint-Aman, New J. Chem. 1998, 22, 1399–
1402.
[20]D. Mandon, A. Machkour, S. Goetz, R. Welter, Inorg. Chem. 2002,
41, 5364–5372.
[21]A. Machkour, D. Mandon, M. Lachkar, R. Welter, Inorg. Chem.
2004, 43, 1545–1550.
[22]A. Machkour, D. Mandon, M. Lachkar, R. Welter, Eur. J. Inorg.
Chem. 2005, 158–161.
[23]M. M. Makowska-Grzyska, E. Szajna, C. Shipley, A. M. Arif, M. H.
Mitchell, J. A. Halfen, L. M. Berreau, Inorg. Chem. 2003, 42, 7472–
7488.
[24]D. Mandon, A. Nopper, T. Litrol, S. Goetz, Inorg. Chem. 2001, 40,
4803–4806.
[25]M. C. Rodrigez, F. Lambert, I. Morgenstern-Badarau, M. Cesario, J.
Guilhem, B. B. Keita, L. Nadjo, Inorg. Chem. 1997, 36, 3525–3531.
[26]A. Machkour, D. Mandon, M. Lachkar, R. Welter, Inorg. Chim.
Acta 2005, 358, 839–843.
Crystal data for [(BCATTPA)FeIIICl2]·Et2O (1·Et2O): Violet crystals,
0.100.100.10 mm3; C34H35Cl2FeN4O5, M=706.41 gmolꢀ1. Monoclinic,
space group P21/c, a=14.360(5), b=13.589(5), c=16.874(5) , b=
94.654(5)8, V=3281.9(19) 3, 1calcd =1.430 gcmꢀ3
,
Z=4, 1.428<q<
29.178. Of 8835 total reflections, 4546 were considered to be observed
[I>2s(I)], with 405 parameters. Final results: R=0.0623 and Rw =0.1553;
GOF=0.879; maximum residual electronic density: 1.068; minimum re-
sidual electronic density: ꢀ0.913.
Crystal data for [(BCATTPA)FeIII2Cl2]·CH3CN (3·CH3CN): Dark red
crystals, 0.100.070.03 mm3; C32H25Cl2Fe2N4O5, M=726.17 gmolꢀ1. Or-
thorhombic, space group P212121, a=12.6320(10), b=14.631(2), c=
16.550(2) , V=3058.8(6) 3, 1calcd =1.577 gcmꢀ3
, Z=4, 1.868<q<
30.048. Of 8900 total reflections, 5877 were considered to be observed
[I>2s(I)], with 406 parameters. Final results: R=0.0567 and Rw =0.1218;
GOF=0.936; Flack x: 0.00(2); maximum residual electronic density:
0.544; minimum residual electronic density: ꢀ0.717.
CCDC-298849 and CCDC-298850 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of charge
ac.uk/data_request/cif.
[27]N. K. Thallaj, A. Machkour, D. Mandon, R. Welter, New J. Chem.
2005, 29, 1555–1558.
[28]A. G. Blackman, C. R. Chim. 2004, 7, 107–119.
[29]T. J. Hubin, J. M. McCormick, S. R. Collinson, M. Buchalova, C. M.
Perkins, N. W. Alcock, P. K. Kahol, A. Raghunatan, D. H. Busch, J.
Am. Chem. Soc. 2000, 122, 2512–2522.
[30]D.-H. Jo, J.-M. Chiou, L. Que, Jr., Inorg. Chem. 2001, 40, 3181–
3190.
Acknowledgments
[31]The values of the redox potentials of the many dichloroiron( ii) com-
plexes studied by us are all systematically positive and will be pub-
lished later.
This work was supported as a collaborative action between CNRS (Proj-
ect no. 17703-France) and CNRST (Project no. chimie 08/05-Morocco).
[32]Y. Zang, L. Que, Jr., Inorg. Chem. 1995, 34, 1030–1035.
Chem. Eur. J. 2006, 12, 6660 – 6668
ꢁ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6667