is the side-chain containing a thiazole ring, which is supposed
to play an important role for their bioactivity.7 Thus, we
designed novel hybrid compounds (8-13, Scheme 1) com-
posed of the 16-membered trilactone core structure of
macrosphelides and the thiazole-containing side chain of
epothilones, aiming at improved potential of macrosphelides
as a new efficient apoptosis inducing agent. Herein, we wish
to report synthesis of the hybrid compounds based on a ring-
closing metathesis (RCM) strategy and their potent apoptosis
inducing ability.
Scheme 1. Hybridization of Natural Macrosphelides and
Epothilones
We have already developed an efficient synthetic strategy
of natural macrosphelides A, B, and E using RCM as a key
macrocyclization reaction.8 It is expected that broad ap-
plicability and high functional group compatibility of RCM
may bring a favorable opportunity for the synthesis of the
hybrids containing the thiazole function. For the synthesis
of the hybrids 8-11, three chiral blocks 14,9 15,2b and 182b
were prepared according to established methods, and they
were combined to RCM substrates having full components
(side chains, triester backbone, and requisite chiral centers)
of the target compounds. Practically, as shown in Scheme
2, thiazole-containing chiral alcohol 14 was subjected to
Scheme 2. Synthesis of Hybrid Compounds 8 and 9
macrosphelides.4 In conjunction with that, we have noted
the same 16-membered natural polyketides, epothilones
(Scheme 1),5 which have been reported to exhibit extraor-
dinarily potent cytotoxicity in a broad range of human cancer
cell lines through a paclitaxel (Taxol)-like mechanism of
action.5 In addition, epothilones are known to induce mitotic
arrest at the G2/M transition as a result of aberrant spindle
formation, leading to apoptotic cell death,6 which is suggested
to have close correlation with the tumor cell growth
inhibitory effects. One of the structural features of epothilones
(3) For isolation, structure elucidation, and biological activities, see: (a)
Hayashi, M.; Kim, Y.-P.; Hiraoka, H.; Natori, M.; Takamatsu, S.;
Kawakubo, T.; Masuma, R.; Komiyama, K.; Omura, S. J. Antibiot. 1995,
48, 1435-1439. (b) Takamatsu, S.; Kim, Y.-P.; Hayashi, M.; Hiraoka, H.;
Natori, M.; Komiyama, K.; Omura, S. J. Antibiot. 1996, 49, 95-98. (c)
Takamatsu, S.; Hiraoka, H.; Kim, Y.-P.; Hayashi, M.; Natori, M.;
Komiyama, K.; Omura, S. J. Antibiot. 1997, 50, 878-880. (d) Fukami, A.;
Taniguchi, Y.; Nakamura, T.; Rho, M.-C.; Kawaguchi, K.; Hayashi, M.;
Komiyama, K.; Omura, S. J. Antibiot. 1999, 52, 501-504. (e) Numata, A.;
Iritani, M.; Yamada, T.; Minoura, K.; Matsumura, E.; Yamori, T.; Tsuruo,
T. Tetrahedron Lett. 1997, 38, 8215-8218. (f) Yamada, T.; Iritani, M.;
Doi, M.; Minoura, K.; Ito, T.; Numata, A. J. Chem. Soc., Perkin Trans. 1
2001, 3046-3053. (g) Yamada, T.; Iritani, M.; Minoura, K.; Numata, A.;
Kobayashi, Y.; Wang, Y.-G. J. Antibiot. 2002, 55, 147-154.
(4) Unpublished results; manuscript has been submitted for publication.
(5) (a) Bollag, D. M.; McQueney, P. A.; Zhu, J.; Hensens, O.; Koupal,
L.; Liesch, J.; Goetz, M.; Lazarides, E.; Woods, C. M. Cancer Res. 1995,
55, 2325-2333. (b) Giannakakou, P.; Gussio, R.; Nogales, E.; Downing,
K. H.; Zaharevitz, D.; Bollbuck, B.; Poy, G.; Sackett, D.; Nicolaou, K. C.;
Fojo, T. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 2904-2909. For a review,
see: (c) Nicolaou, K. C.; Roschangar, F.; Vourloumis, D. Angew. Chem.,
Int. Ed. 1998, 37, 2014-2045. For a recent review, see: (d) Altmann, K.-
H. Curr. Pharm. Design 2005, 11, 1595-1613.
esterification with TBS-masked hydroxy acid 15, and then
successive desilylation-esterification sequence with 18 and
acryloyl chloride provided the compound 21 with high
efficiency. RCM of 21 proceeded smoothly in the presence
of the second Grubbs’ ruthenium catalyst10 to afford the 16-
membered macrocycle with an exclusive stereoselectivity.
Subsequent removal of the MEM group and further oxidation
of the hydroxyl group gave the hybrids 8 and 9, respectively.
Similarly, the hybrids 10 and 11 were synthesized by simply
changing the coupling order of the chiral parts 14, 15, and
18 (Scheme 3).
(6) (a) Wolff, A.; Technau, A.; Brandner, G. Int. J. Oncol. 1997, 11,
123-126. (b) Blagosklonny, M. V.; Schulte, T.; Nguyen, P.; Trepel, J.;
Neckers, L. M. Cancer Res. 1996, 56, 1851-1854. (c) Blagosklonny, M.
V.; Giannakakou, P.; El-Deiry, W. S.; Kingston, D. G. I.; Higgs, P. I.;
Neckers, L.; Fojo, T. Cancer Res. 1997, 57, 130-135. For a minireview,
see: (d) Altmann, K.-H.; Wartmann, M.; O’Reilly, T. Biochim. Biophys.
Acta 2000, 1470, M79-M91.
(7) Nicolaou, K. C.; Scarpelli, R.; Bollbuck, B.; Werschkun, B.; Pereira,
M. M. A.; Wartmann, M.; Altmann, K.-H.; Zaharevitz, D.; Gussio, R.;
Giannakakou, P. Chem. Biol. 2000, 7, 593-599. See also ref 5b.
4610
Org. Lett., Vol. 8, No. 20, 2006