J. Li et al. / Tetrahedron Letters 53 (2012) 3981–3983
3983
Table 2 (continued)
Acknowledgments
Entry
Time (h)
24
Productb (yield)
The authors are grateful to the Ministry of Science and Technol-
ogy (Grant 2009ZX09501-00), the Chinese Academy of Sciences
and the National Natural Science Foundation of China (Grant
20632050 and 20921091) for their financial support.
O
O
NC
N
13
14
6n (97%)
Ph
Supplementary data
O
O
MeO
6o (92%)
N
50
50
Supplementary data associated with this article can be found, in
Ph
O
References and notes
O
MeO
6p (65%)
N
15
1. (a) Brickner, S. J.; Hutchinson, D. K.; Barbachyn, M. R.; Manninen, P. R.;
Ulanowicz, D. A.; Garmon, S. A.; Grega, K. C.; Hendges, S. K.; Toops, D. S.; Ford, C.
Z.; Zurenko, G. E. J. Med. Chem. 1996, 39, 673; (b) Renslo, A. R.; Jaishankar, P.;
Venkatachalam, R.; Hackbarth, C.; Lopez, S.; Patel, D. V.; Gordeev, M. F. J. Med.
Chem. 2005, 48, 5009; (c) Tucker, J. A.; Allwine, D. A.; Grega, K. C.; Barbachyn,
M. R.; Klock, J. L.; Adamski, J. L.; Brickner, S. J.; Hutchinson, D. K.; Ford, C. W.;
Zurenko, G. E.; Conradi, R. A.; Burton, P. S.; Jensen, R. M. J. Med. Chem. 1998, 41,
3727.
2. (a) Xu, G.; Zhou, Y.; Yang, C.; Xie, Y. Heteroat. Chem. 2008, 19, 316; (b) Lohray, B.
B.; Gandhi, N.; Srivastava, B. K.; Lohray, V. B. Bioorg. Med. Chem. Lett. 2006, 16,
3817; (c) McKee, E. E.; Ferguson, M.; Bentley, A. T.; Marks, T. A. Antimicrob.
Agents Chemother. 2006, 50, 2042.
3. (a) Gregory, W. A.; Brittelli, D. R.; Wang, C. L. J.; Wuonola, M. A.; McRipley, R. J.;
Eustice, D. C.; Eberly, V. S.; Bartholomew, P. T.; Slee, A. M.; Forbes, M. J. Med.
Chem. 1989, 32, 1673; (b) Park, C. H.; Brittelli, D. R.; Wang, C. L. J.; Marsh, F. D.;
Gregory, W. A.; Wuonola, M. A.; McRipley, R. J.; Eberly, V. S.; Slee, A. M.; Forbes,
M. J. Med. Chem. 1992, 35, 1156.
4. (a) Mai, A.; Artico, M.; Esposito, M.; Sbardella, G.; Massa, S.; Befani, O.; Turini,
P.; Glovannini, V.; Mondovi, B. J. Med. Chem. 2002, 45, 1180; (b) Valente, S.;
Tomassi, S.; Tempera, G.; Saccoccio, S.; Agostinelli, E.; Mai, A. J. Med. Chem.
2011, 54, 8228; (c) Moureau, F.; Wouters, J.; Vercauteren, D. P.; Collin, S.;
Evrard, G.; Durant, F.; Ducrey, F.; Koenig, J. J.; Jarreau, F. X. Eur. J. Med. Chem.
1994, 29, 269.
Me
O
O
O
16
17
18
24
30
18
24
N
OH
3 (72%)
F
O
O
N
N
OH
6q (72%)
O
N
O
N
6r (82%)
O
O
5. Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Zappia, G. Org. Lett. 2001, 3, 2539.
6. Ghosh, A.; Sieser, J. E.; Riou, M.; Cai, W.; Rivera-Ruiz, L. Org. Lett. 2003, 5, 2207.
7. Ramgren, S. D.; Silberstein, A. L.; Yang, Y.; Garg, N. K. Angew. Chem., Int. Ed.
2011, 50, 2171.
19
N
S
6s (53%)
a
8. Mantel, M. L. H.; Lindhardt, A. T.; Lupp, D.; Skrydstrup, T. Chem. Eur. J. 2010, 16,
5437.
9. Mallesham, B.; Rajesh, B. M.; Reddy, P. R.; Srinivas, D.; Trehan, S. Org. Lett. 2003,
5, 963.
Reaction conditions: aryl bromide (1 mmol), substituted oxazolidin-2-one
(1.2 mmol), CuI (0.05 mmol), N,N-dimethylglycine (0.1 mmol), K2CO3 (2 mmol),
DMF (0.5 mL).
b
Isolated yield.
10. Cacchi, S.; Fabrizi, G.; Goggiamani, A. Heterocycles 2003, 61, 505.
11. (a) Cristau, H.-J.; Cellier, P. P.; Spindler, J.-F.; Taillefer, M. Chem. Eur. J. 2004, 10,
5607; (b) Chen, Y.-J.; Chen, H.-H. Org. Lett. 2006, 8, 5609; (c) Mino, T.; Harada,
Y.; Shindo, H.; Sakamoto, M.; Fujita, T. Synlett 2008, 614; (d) Phillips, D. P.; Zhu,
X.-F.; Lau, T. L.; He, X.; Yang, K.; Liu, H. Tetrahedron Lett. 2009, 50, 7293; (e)
Jammi, S.; Sakthivel, S.; Rout, L.; Mukherjee, T.; Mandal, S.; Mitra, R.; Saha, P.;
Punniyamurthy, T. J. Org. Chem. 1971, 2009, 74; (f) Lin, B.; Liu, M.; Ye, Z.; Ding,
J.; Wu, H.; Cheng, J. Org. Biomol. Chem. 2009, 7, 869; (g) Jammi, S.;
Krishnamoorthy, S.; Saha, P.; Kundu, D. S.; Sakthivel, S.; Ali, M. A.; Paul, R.;
Punniyamurthy, T. Synlett 2009, 20, 3323; (h) Ali, M. A.; Saha, P.;
Punniyamurthy, T. Synthesis 2010, 6, 908.
72% yield, which could be used for assembling racemic Linezolid
(1). Additionally, two heteroaryl bromides were found to be appli-
cable, producing 6r and 6s, respectively (entries 18 and 19).
In conclusion, we have developed an efficient method for
assembling N-aryloxazolidinones, which relied on a CuI/N,N-dim-
ethylglycine-catalyzed coupling reaction of aryl bromides with
substituted oxazolidinones. The economical catalytic system used
here, together with good coupling yields and compatibility for a
variety of substrates will make this method very competitive in
the preparation of bioactive N-aryloxazolidinones.
12. Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
13. Pan, X.; Cai, Q.; Ma, D. Org. Lett. 1809, 2004, 6.