o-Mes*), 150.8 (p-Mes*), 136.2 (dd, 1JPC 62, 3JPC 27 Hz, ipso-Mes*), 135.8
(dd, 1JPC 16, 3JPC 11 Hz, ipso-Ph), 133.6 (d, 2JPC 20 Hz, o-Ph), 128.8 (p-Ph),
122.0 (m-Mes*), 37.8 (d, 3JPC 1 Hz, o-CMe3), 35.1 (p-CMe3), 32.9 (d, 4JPC
7 Hz, o-CMe3), 31.4 (p-CMe3); 31P{1H} NMR (81 MHz, CDCl3) d 302.4
(PNC), 13.4 (PPh2), 2JPP 277 Hz.
‡ Spectroscopic data: for 3: yellow prisms (hexane), mp 196–198 °C
(decomp.); 1H NMR (200 MHz, CDCl3) d 7.6–7.7 (4H, arom.), 7.4–7.5 (6H,
4
arom.), 7.36 (2H, d, JPH 2 Hz, m-Mes*), 1.35 (18H, o-But), 1.29 (9H, p-
But); 13C{1H} NMR (50 MHz, CDCl3) d 199.3 (d, 2JPC 23 Hz, COax), 197.0
(dd, 2JPC 7, 2JPC 7 Hz, COeq), 163.5 (dd, 1JPC 79, 1JPC 4 Hz, PNC), 153.3 (d,
2JPC 3 Hz, o-Mes*), 151.3 (p-Mes*), 135.1 (dd, 1JPC 61, 3JPC 18 Hz, ipso-
Mes*), 134.5 (dd, 1JPC 44, 3JPC 10 Hz, ipso-Ph), 132.7 (d, 2JPC 12 Hz, o-Ph),
4
3
130.2 (d, JPC 2 Hz, p-Ph), 128.6 (d, JPC 10 Hz, m-Ph), 122.3 (m-Mes*),
37.5 (o-CMe3), 35.0 (p-CMe3), 32.6 (d, 4JPC 7 Hz, o-CMe3), 31.2 (p-CMe3);
31P{1H} NMR (81 MHz, CDCl3) d 328.0 (PNC), 1JPW 187 Hz, 34.2 (PPh2),
2JPP 187 Hz; IR (KBr) n 2071, 1988, 1936, 1919 cm21, FAB-MS m/z 804
(M+ 2 CO; 53%), 692 (M+ 25CO; 79%), 275 (Mes*P+ 2 1; 100%). Anal.
Calc. for C36H39ClO5P2W: C, 51.91; H, 4.72; Cl, 4.26. Found: C, 51.92; H,
4.78; Cl, 4.30%. For 4: red prisms (hexane), mp 220–222 °C (decomp.); 1H
NMR (200 MHz, CDCl3) d 7.6–7.7 (4H, arom.), 7.4–7.5 (8H, arom.), 1.61
(18H, o-But), 1.34 (9H, p-But); 13C{1H} NMR (50 MHz, CDCl3) d 208.4
(dd, 2JPC 36, 2JPC 6 Hz, COeq), 207.7 (dd, 2JPC 25, 2JPC 12 Hz, COeq), 203.2
(dd, 2JPC 10, 2JPC 7 Hz, COax), 156.4 (dd, 1JPC 23, 1JPC 9 Hz, PNC), 155.6
(d, 2JPC 2 Hz, o-Mes*), 153.6 (d, 4JPC 2 Hz, p-Mes*), 132.5 (d, 2JPC 14 Hz,
o-Ph), 131.5 (dd, 1JPC 38, 3JPC 16 Hz, ipso-Ph), 130.9 (d, 4JPC 2 Hz, p-Ph),
Fig. 2 An ORTEP drawing of 4 with 50% probability ellipsoids. Hydrogen
atoms are omitted for clarity. Bond lengths (Å) and angles (°): W–P(1)
2.489(3), W–P(2) 2.526(3), C(1)–Cl 1.73(1), P(1)–C(1) 1.651(10), P(1)–
Cipso(Mes*) 1.82(1), C(1)–P(2) 1.82(1), P(2)–Cipso(Ph) 1.83(1), P(2)–
Cipso(PhA) 1.81(1), C(1)–P(1)–Cipso(Mes*) 108.6(5), P(1)–W–P(2) 65.1(1),
W–P(2)–C(1) 93.5(3), W–P(1)–C(1) 99.4(4), W–P(1)–Cipso(Mes*)
152.0(3), W–P(2)–Cipso(Ph) 115.6(4), W–P(2)–Cipso(PhA) 127.6(4), C(1)–
P(2)–Cipso(Ph) 109.7(5), C(1)–P(2)–Cipso(PhA) 104.5(5), Cipso(Ph)–P(2)–
Cipso(PhA) 103.9(5), Cl–C(1)–P(1) 131.2(6), Cl–C(1)–P2 126.8(6), P(1)–
C(1)–P(2) 101.8(5).
3
1
3
130.8 (d, JPC 11 Hz, m-Ph), 125.7 (dd, JPC 26, JPC 26 Hz, ipso-Mes*),
122.5 (d, 3JPC 6 Hz, m-Mes*), 38.3 (d, 3JPC 1 Hz, o-CMe3), 35.3 (d, 5JPC
1
Hz, p-CMe3), 33.2 (d, 4JPC 3 Hz, o-CMe3), 31.0 (p-CMe3); 31P{1H} NMR
(81 MHz, CDCl3) d 263.7 (PNC), 1JPW 213 Hz, 19.1 (PPh2), 1JPW 202 Hz,
2JPP 116 Hz; IR (KBr) n 2019, 1923, 1903, 1890 cm21, FAB MS m/z 804
(M+; 59%), 692 (M+ 2 4CO; 96%), 275 (Mes*P+ 2 1; 90%), 154 (PhPCCl+
2 1; 100%). Anal. Calc. for C35H39ClO4P2W: C, 52.23; H, 4.88; Cl, 4.40.
Found: C, 52.50; H, 4.95; Cl, 4.52%.
§ Crystal data: for 3: C36H39ClO5P2W, M = 832.95, monoclinic, P21/c (no.
14), a = 10.062(5), b = 25.244(3), c = 13.845(2) Å, b = 93.920(3)°, V =
3508(1) Å3, Z = 4, Dc = 1.577 g cm2 3, m = 3.504 mm21, T = 120(1) K,
2qmax = 50.1°, 5861 total reflections, 5487 observed reflections [I >
1s(I)], R1 = 0.031, Rw = 0.073, S = 0.96 for 562 parameters, CCDC
159934.
temperature. After 12 h, 4 was obtained in 19% yield as red
crystals together with 63% recovery of Z-2, after purification by
gel permeation chromatographic separation (Scheme 1).‡ A
trace amount of 4 was also obtained by the reaction of Z-2 and
W(CO)5(thf). In the 31P NMR spectrum of 4, a peak due to the
PNC phosphorus atom is observed at a higher field than that for
Z-2, and both of the two phosphorus atoms show satellite peaks
due to the presence of the tungsten atom. Moreover, the
coupling constant between the PNC phosphorus and the tungsten
(213 Hz) is reasonable for a complex with an end-on
coordinating mode.14 On the other hand, Appel and coworkers
reported a side-on coordination with Fe(0) on the PNC moiety in
the 1,3-diphosphapropene system.3 In the 13C NMR spectrum
of 4, a peak due to the PNC carbon atom has a higher chemical
shift than that for Z-2, and the two 1JPC values are small (23 and
9 Hz). Two different chemical shifts were observed for COeq
carbons together with two different 2JPC values, probably due to
the coordination by two different types of phosphorus atoms.
The structure of 4 was unambiguously determined by X-ray
crystallography and Fig. 2 depicts an ORTEP drawing.§ The
PNC phosphorus atom coordinates in the end-on mode which
For 4: C35H39ClO4P2W, M = 804.94, orthorhombic, P212121 (no. 19), a
= 16.687(2), b = 21.984(3), c = 9.310(3) Å, V = 3415(1) Å3, Z = 4, Dc
= 1.565 g cm21, m = 3.594 mm21, T = 125(1) K, 2qmax = 50.1°, 3318
total reflections, 3132 observed reflections [I > 2s(I)], R1 = 0.049, Rw
0.110, S = 1.27 for 389 parameters, CCDC 159933.
=
data in CIF or other electronic format.
1 M. Regitz and O. J. Scherer, Multiple Bonds and Low Coordination in
Phosphorus Chemistry, Georg Thieme Verlag, Stuttgart, 1990; K. B.
Dillon, F. Mathey and J. F. Nixon, Phosphorus: The Carbon Copy, John
Wiley & Sons, Chichester, 1998.
2 M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu and T. Higuchi, J. Am.
Chem. Soc., 1981, 103, 4587; M. Yoshifuji, I. Shima, N. Inamoto, K.
Hirotsu and T. Higuchi, J. Am. Chem. Soc., 1982, 104, 6167.
3 R. Appel and W. Schuhn, J. Organomet. Chem., 1987, 329, 179.
4 D. Bourissou, Y. Canac, M.-I. Collado, A. Baceiredo and G. Bertrand,
Chem. Commun., 1997, 2399; D. Bourissou, Y. Canac, H. Gornitzka,
C. J. Marsden, A. Baceiredo and G. Bertrand, Eur. J. Inorg. Chem.,
1999, 1479.
5 C. A. Akpan, P. B. Hitchcock, J. F. Nixon, M. Yoshifuji, T. Niitsu and
N. Inamoto, J. Organomet. Chem., 1988, 338, C35.
6 W. Keim, R. Appel, S. Gruppe and F. Knoch, Angew. Chem., Int. Ed.
Engl., 1987, 26, 1012.
7 K. Toyota, K. Masaki, T. Abe and M. Yoshifuji, Chem. Lett., 1995,
221.
1
leads to a large JPW value in the NMR spectrum. The P1–W
distance [2.489(3) Å] is shorter than the P2–W distance
[2.526(3) Å], and the P1–C(1) distance [1.651(10)] is normal
for the PNC bond. The P1–W–P2 angle is small with a value of
65.1(1)°. The P1–C(1)–P2 and C(1)–P2–W angles, 93.5(3) and
101.8(5)°, respectively, are smaller than the corresponding
angles for 3.
Chelate complex 4 was also derived by photo-irradiation of 3.
A THF solution of 3 was irradiated with a medium-pressure
mercury lamp at 5 °C for 16 h in an NMR tube to afford 4 almost
quantitatively. No E/Z isomerization of 3 was observed
probably due to the steric hindrance between the Mes* and Ph2P
moieties.15
8 B. Breit, J. Mol. Catal. A, 1999, 143, 143.
9 R. Shintani, M. M.-C. Lo and G. C. Fu, Org. Lett., 2000, 2, 3695.
10 S. Ikeda, F. Ohhata, M. Miyoshi, R. Tanaka, T. Minami, F. Ozawa and
M. Yoshifuji, Angew. Chem., Int. Ed., 2000, 39, 4512.
11 (a) M. Yoshifuji, S. Ito, K. Toyota and M. Yasunami, Bull. Chem. Soc.
Jpn., 1995, 68, 1206; (b) M. van der Sluis, F. Bickelhaupt, N. Neldman,
H. Kooijman, A. L. Spek, W. Eisfeld and M. Regitz, Chem. Ber., 1995,
128, 465.
Compound 2 contains a chlorine atom at the sp2-carbon atom
which can potentially be substituted. We are now attempting to
prepare various types of 1,3-diphosphapropenes from 2, as well
as metal complexes of the type 3 and 4.
This work was supported in part by a Grant-in-Aid for
Scientific Research (No. 12042208) from the Ministry of
Education, Science, Sports and Culture, Japan.
12 T. C. Klebach, R. Lourens and F. Bickelhaupt, J. Organomet. Chem.,
1981, 210, 211.
13 M. J. Aroney, I. E. Buys, M. S. Davies and T. W. Hambley, J. Chem.
Soc., Dalton Trans., 1994, 2827.
14 M. Yoshifuji, Bull. Chem. Soc. Jpn., 1997, 70, 2881.
15 M. Yoshifuji, K. Toyota and N. Inamoto, Tetrahedron Lett., 1985, 26,
1727.
Notes and references
† NMR data for 2: 1H NMR (200 MHz, CDCl3) d 7.4–7.5 (4H, arom.),
7.3–7.4 (8H, arom.) 1.41 (18H, o-But), 1.31 (9H, p-But); 13C{1H} NMR (50
MHz, CDCl3) d 169.0 (dd, 1JPC 72, 1JPC 54 Hz, PNC), 153.2 (d, 2JPC 2 Hz,
Chem. Commun., 2001, 1208–1209
1209