C O M M U N I C A T I O N S
Scheme 1
be noted that the reaction is sensitive to steric hindrance. For in-
stance, with a secondary methanesulfonate ester (Table 2, entry 3),
the product was obtained in a very poor yield under the same reac-
tion conditions. This result further argues against a pure Lewis acid
mechanism. Previously, it was shown that scandium(III) triflate can
catalyze the alkylation of aromatic compounds with methanesulfon-
ates derived from secondary alcohols through a Friedel-Crafts
process, which is quite different from the reaction described here.8
In summary, we report a gold(III)-catalyzed functionalization
of aromatic C-H with primary alcohol triflate or methanesulfonate
esters to construct C-C bonds. Linear substituted arene products
were prepared. We also showed that chromans and benzopyranones
can be synthesized in good yields with the use of this method.
Mechanistic studies indicate the involvement of the arylgold(III)
species as the reaction intermediate. This intermediate then reacts
with the sulfonate ester to give the final product.
almost all gold(III) is in the arylgold(III) form during the course
of the reaction.
The method described here can be used to construct cyclic struc-
tures, as shown in Table 2. Various chromans can be prepared in
good to excellent yields. Benzopyranones can also be obtained in
good yields from the substrates shown in entries 11-14 (Table 2).
The ester bond in the product can be hydrolyzed (eq 2), and this
provides a good method for accessing a group of important stru-
ctures7 with modification at the ortho-position of phenols. It should
Acknowledgment. This research was supported by the Uni-
versity of Chicago and an award from Research Corporation
(RI1179). Acknowledgment is made also to the Donors of the
American Chemical Society Petroleum Research Fund (PRF 38848-
G3) for support of this research.
Table 2. Gold-Catalyzed Intramolecular Cyclialkylationa
Supporting Information Available: Experimental details and
Supporting Information Figures S1 and S2. This material is available
References
(1) (a) Hashmi, A. S. K. Gold Bull. 2003, 36, 3-9. (b) Hashmi, A. S. K.;
Schwarz, L.; Choi, J. H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39,
2285-2288. (c) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int.
Ed. 1998, 37, 1415-1418. (d) Mizushima, E.; Sato, K.; Hayashi, T.;
Tanaka, M. Angew. Chem., Int. Ed. 2002, 41, 4563-4565. (e) Asao, N.;
Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc.
2002, 124, 12650-12651. (f) Fuchita, Y.; Utsunomiya, Y.; Yasutake, M.
J. Chem. Soc., Dalton Trans. 2001, 2330-2334. (g) Kennedy-Smith, J.
J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526-4527.
(h) Reetz, M. T.; Sommer, K. Eur. J. Org. Chem. 2003, 3485-3496. (i)
Arcadi, A.; Bianchi, G.; Marinelli, F. Synthesis 2004, 610-618. (j) Dyker,
G.; Muth, E.; Hashmi, A. S. K.; Ding, L. AdV. Synth. Catal. 2003, 345,
1247-1252. (k) Yao, X.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 6884-6885.
(l) Nieto-Oberhuber, C.; Mun˜oz, M. P.; Bun˜uel, E.; Nevado, C.; Ca´rdenas,
D. J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 2402-06.
(2) (a) Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669-3671. (b) Shi, Z.; He,
C. J. Am. Chem. Soc. 2004, 126, 5964-5965.
(3) (a) Olah, G. A. Friedel-Crafts and Related Reactions; Wiley: New York,
1973. For a recent review, see: (b) Bandini, M.; Melloni, A.; Umani-
Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550-556.
(4) (a) Jia, C. G.; Piao, D. G.; Oyamada, J. Z.; Lu, W. J.; Kitamura, T.;
Fujiwara, Y. Science 2000, 287, 1992-1995. (b) Cho, J.-Y.; Tse, M. K.;
Holmes, D.; Maleczka, R. E.; Smith, M. R. Science 2002, 295, 305-308.
(c) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.;
Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390-391. (d) Murai, S.;
Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani,
N. Nature 1993, 366, 529-531. (e) Weissman, H.; Song, X. P.; Milstein,
D. J. Am. Chem. Soc. 2001, 123, 337-338. (f) Matsumoto, T.; Taube, D.
J.; Periana, R. A.; Taube, H.; Yoshida, H. J. Am. Chem. Soc. 2000, 122,
7414-7415. (g) Tan, K. L.; Bergman, R. G.; Ellman, J. A. J. Am. Chem.
Soc. 2001, 123, 2685-2686. (h) Yokota, T.; Tani, M.; Sakaguchi, S.;
Ishii, Y. J. Am. Chem. Soc. 2003, 125, 1476-1477. (i) Lail, M.; Arrowood,
B. N.; Gunnoe, T. B. J. Am. Chem. Soc. 2003, 125, 7506-7507. (j)
Hennessy, E.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 12084-
12085. (k) Tsukada, N.; Mitsuboshi, T.; Setoguchi, H.; Inoue, Y. J. Am.
Chem. Soc. 2003, 125, 12102-12103. (l) Ferreira, E. M.; Stoltz, B. M. J.
Am. Chem. Soc. 2003, 125, 9578-9579. (m) Liu, C.; Han, X.; Wang, X.;
Widenhoefer, A. W. J. Am. Chem. Soc. 2004, 126, 3700-3701. Also, for
recent reviews, see: (n) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Angew.
Chem., Int. Ed. 1998, 37, 2181-2192. (o) Ritleng, V.; Sirlin, C.; Pfeffer,
M. Chem. ReV. 2002, 102, 1731-1769.
(5) (a) Kharasch, M. S.; Isbell, H. S. J. Am. Chem. Soc. 1931, 53, 3053-
3059. (b) de Graaf, P. W. J.; Boersma, J.; van der Kerk, G. J. M. J.
Organomet. Chem. 1976, 105, 399-406.
(6) Isolated dichlorophenylgold(III) (0.2 mmol) was reacted with 0.4 mmol
of AgOTf and 0.4 mmol of n-butyl triflate at 120 °C in dichloroethane.
The reaction was monitored by GC/MS. The product yield was determined
by GC peak intensity after comparing to that of the standard compound
(Supporting Information Figure S1).
(7) Teiber, J. F.; Draganov, D. I.; La Du, B. N. Biochem. Pharmacol. 2003,
66, 887-896.
a All reactions were conducted with 0.5 mmol of substrate and 5 mol %
AuCl3/3Ag(OTf) at 120 °C in ClCH2CH2Cl for 48 h. b Isolated yields are
reported. c GC yield, most starting material was recovered.
(8) Kotsuki, H.; Oshisi, T.; Inoue, M. Synlett 1998, 255-256.
JA046890Q
9
J. AM. CHEM. SOC. VOL. 126, NO. 42, 2004 13597