Fig. 1 Crystal structure of one of the two crystallographically indepen-
dent molecules of (+)-cis-(1S,2R)-1,2,3,4-tetrahydro-phenanthrene dicam-
phanate 22bcam
.
In conclusion, this communication provides preliminary evi-
dence of dioxygenase-catalysed cis-dihydroxylation to yield (i)
enantiopure bis(cis-diol) metabolites of PAHs (7, 8) at non-K
region and bay region positions using BPDO, (ii) enantiopure cis-
diol acetonides of monocyclic arenes (11S, 13R, 15) and tricyclic
PAHs (18, 19), using TDO and BPDO enzymes respectively.
We thank CenTACat and HEA NS Programme and Science
Foundation Ireland (NDS) and the European Social Fund (TB,
SMcG) for financial support. We also wish to acknowledge receipt
of the P. putida UV4 and S. yanoikuyae B8/36 strains from the
laboratories of Dr R. Holt (robert.holt@)npilpharma.co.uk) and
Prof. R. Parales (rparales@ucdavis.edu) respectively.
Scheme 4
yield, [a]D +72, CHCl3, Scheme 4). To assign the relative and
(3S,4R,7S,8R) absolute configuration of bis(acetonide) 21
(Scheme 4), a chemical resolution method for racemic cis-1,2,3,4-
tetrahydrodiol 22a–22b was developed. This was achieved by
fractional crystallisation of the corresponding dicamphanate esters
22acam and 22bcam formed from (1S)-camphanic chloride.
Diastereoisomer 22acam ([a]D 2140, CHCl3) was crystallised from
EtOH while a pure sample of the more soluble residual compound
22bcam ([a]D +106, CHCl3) was obtained by crystallisation from a
mixture (3 : 2) of EtOH–CHCl3. The absolute configuration of
dicamphanate 22bcam was established as (1S,2R) by X-ray
crystallography. It had been expected that the configuration would
be determined relative to the known configuration of the
camphanate groups but the fortuitous crystallisation of isomer
22bcam as the CHCl3 solvate led to the independent determination
of configuration as (1S,2R) from the anomalous X-ray scattering
of the solvent Cl atoms{ (Fig. 1).
Hydrolysis of dicamphanate 22acam gave the (1R,2S) enantio-
mer of the tetrahydro-phenanthrene cis-diol 22a ([a]D 2100,
CHCl3); it was then used as a substrate with S. yanoikuyae B8/36.
syn-cis-Dihydroxylation occurred at the pseudo bay region and the
(3S,4R,7S,8R) tetraol 23 was isolated as the sole metabolite (20%
yield, [a]D 2123, MeOH). On hydrogenation, followed by reaction
with DMP–TsOH, bis(acetonide) 21 (95% yield, [a]D +66, CHCl3),
of identical absolute configuration to that formed from metabolite
19, was obtained. Thus, the stereochemical correlation sequence
(Scheme 4) established the absolute configuration of bis(acetonide)
21 as (3S,4R,7S,8R) with .98% ee. The major metabolite, cis-diol
acetonide 19, therefore, should also have been formed via a
BPDO-catalysed syn-cis-dihydroxylation of acetonide 17. The
recovered sample, after addition of racemic cis-diol (22a–22b) as
substrate, was found to be enantioenriched in enantiomer 22b,
indicating that kinetic resolution had occurred during BPDO-
catalysed dihydroxylation.
Notes and references
{ CCDC reference number 618516. For crystallographic data in CIF or
other electronic format see DOI: 10.1039/b612191h
1 (a) S. M. Resnick, K. Lee and D. T. Gibson, J. Ind. Microbiol.
Biotechnol., 1996, 17, 438; (b) D. R. Boyd and G. N. Sheldrake, Nat.
Prod. Rep., 1998, 15, 309; (c) T. Hudlicky, G. Gonzales and D. T. Gibson,
Aldrichimica Acta, 1999, 32, 335; (d) D. R. Boyd, N. D. Sharma and
C. C. R. Allen, Curr. Opin. Biotechnol., 2001, 12, 564; (e) R. A. Johnson,
Org. React., 2004, 63, 117; (f) D. R. Boyd and T. Bugg, Org. Biomol.
Chem., 2006, 4, 181.
2 (a) D. M. Jerina, H. Selander, H. Yagi, M. C. Wells, J. F. Davey,
V. Mahadevan and D. T. Gibson, J. Am. Chem. Soc., 1976, 98, 5988; (b)
M. N. Akhtar, D. R. Boyd, N. J. Thompson, M. Koreeda, D. T. Gibson,
V. Mahadevan and D. M. Jerina, J. Chem. Soc., Perkin Trans. 1, 1975,
2506; (c) M. Koreeda, M. N. Akhtar, D. R. Boyd, J. D. Neill, D. T.
Gibson and D. M. Jerina, J. Org. Chem., 1978, 43, 1023; (d) D. T. Gibson,
V. Mahadevan, D. M. Jerina, H. Yagi and H. J. C. Yeh, Science, 1975,
189, 295; (e) D. M. Jerina, P. J. van Bladeren, H. Yagi, D. T. Gibson,
V. Mahadevan, A. S. Neese, M. Koreeda, N. D. Sharma and D. R. Boyd,
J. Org. Chem., 1978, 43, 1023; (f) D. R. Boyd, N. D. Sharma, R. Agarwal,
S. M. Resnick, M. J. Schocken, D. T. Gibson, J. M. Sayer, H. Yagi and
D. M. Jerina, J. Chem. Soc., Perkin Trans. 1, 1997, 1715; (g) D. R. Boyd,
N. D. Sharma, L. V. Modyanova, J. G. Carroll, J. F. Malone,
C. C. R. Allen, J. T. G. Hamilton, D. T. Gibson, R. E. Parales and
H. Dalton, Can. J. Chem., 2002, 80, 589; (h) D. R. Boyd, N. D. Sharma,
F. Hempenstall, M. A. Kennedy, J. F. Malone, S. M. Resnick and
D. T. Gibson, J. Org. Chem., 1999, 64, 4005.
3 D. R. Boyd, G. S. Gadaginamath, N. D. Sharma, A. F. Drake, S. F.
Mason and D. M. Jerina, J. Chem. Soc., Perkin Trans. 1, 1981, 2233.
4 D. Mackay and W. Y. Shiu, J. Chem. Eng. Data, 1977, 22, 399.
5 D. R. Boyd, N. D. Sharma, I. N. Brannigan, M. R. Groocock,
J. F. Malone, G. McConville and C. C. R. Allen, Adv. Synth. Catal.,
2005, 347, 1081.
6 D. R. Boyd, N. D. Sharma, N. Llamas, J. F. Malone, C. R. O’Dowd and
C. C. R. Allen, Org. Biomol. Chem., 2005, 3, 1953.
4936 | Chem. Commun., 2006, 4934–4936
This journal is ß The Royal Society of Chemistry 2006