288
Organometallics 2007, 26, 288-293
Activation of Bis(pyrrolylaldiminato) and
(Salicylaldiminato)(pyrrolylaldiminato) Titanium Polymerization
Catalysts with Methylalumoxane
Konstantin P. Bryliakov,*,† Evgenii A. Kravtsov,† Lewis Broomfield,‡ Evgenii P. Talsi,† and
Manfred Bochmann*,‡
BoreskoV Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 630090 NoVosibirsk,
Russian Federation, and Wolfson Materials and Catalysis Centre, School of Chemical Sciences and
Pharmacy, UniVersity of East Anglia, Norwich NR4 7TJ, United Kingdom
ReceiVed August 25, 2006
Cationic intermediates formed upon activation of an olefin polymerization catalyst based on bis[N-
phenylpyrrolylaldiminato]titanium(IV) dichloride (L2TiCl2, I) and [N-(3-tert-butylsalicylidene)-2,3,4,5,6-
pentafluoroanilinato-N′-phenylpyrrolylaldiminato]titanium(IV) dichloride (L′LTiCl2, II) with methyla-
lumoxane (MAO) have been identified. Outer-sphere ion pairs of the type [L2TiMe(S)]+[MeMAO]- and
[L′LTiMe(S)]+[MeMAO]- capable of ethene polymerization have been characterized by 1H and 13C NMR
spectroscopy. Unlike methyl metallocenium cations, the barrier of the first ethene insertion into the Ti-
Me bonds of these species is not significantly higher than that of subsequent insertions. Surprisingly,
whereas homoligated catalyst precursors L2TiCl2 in the presence of MAO are prone to ligand transfer to
aluminum, under the same conditions the heteroligated system L′LTiCl2/MAO proved resistant to ligand
scrambling.
(comparable to those of metallocenes), whereas activation with
Al(iBu)3/[CPh3]+[B(C6F5)4]- allows the preparation of high
molecular weight polyethene (Mw up to 5 × 106).2 Moreover,
bis(pyrrolylaldiminato) titanium catalysts promote the living
ethene-norbornene copolymerization with high comonomer
incorporation (up to 46.5%) to yield copolymers consisting of
essentially alternating ethene and norbornene units, even though
ethene homopolymerization is not living and norbornene is
not polymerized at all.9 Very recently, heteroligated (salicyl-
aldiminato)(pyrrolylaldiminato) titanium complexes have been
reported that combine the high ethene polymerization activity
of salicylaldiminato systems with the more open structure
required for comonomer incorporation and display significantly
improved activity and high comonomer incorporation compared
to homoligated couterparts.14-17
Introduction
Complexes of group IV metals with pyrrolylaldiminato
ligands1-4 have attracted particular attention as single-site
catalysts of olefin polymerization.5-11 Titanium complexes were
the first to show high catalytic activities and are therefore more
developed to date; however, zirconium and hafnium counterparts
are currently being investigated as well.4,12,13 Bis(pyrrolylaldi-
minato) titanium complexes (“PI catalysts”) show attractive
catalytic properties: when activated with methylalumoxane
(MAO), they demonstrate high ethene polymerization activities
* Corresponding author. Fax: +7 383 3308056. E-mail: bryliako@
catalysis.ru.
† G. K. Boreskov Institute of Catalysis.
‡ University of East Anglia.
On the other hand, the activation processes of pyrrolylaldi-
minato and (salicylaldiminato)(pyrrolylaldiminato) titanium
complexes with commonly used cocatalysts have so far not been
investigated in detail. Recently, we and others published a
spectroscopic study of the cationic intermediates formed upon
activation of a bis(salicylaldiminato) titanium catalyst capable
of promoting living ethene polymerization.18-20 Here we report
the results of a detailed study of the interaction of the catalyst
(1) Male, M. A. H.; Thornton-Pett, M.; Bochmann, M. J. Chem. Soc.,
Dalton Trans. 1997, 2487.
(2) Yoshida, Y.; Matsui, S.; Takagi, Y.; Mitani, M.; Nitabaru, M.;
Nakano, T.; Tanaka, H.; Fujita, T. Chem. Lett. 2000, 1270.
(3) Yoshida, Y.; Matsui, S.; Takagi, Y.; Mitani, M.; Nakano, T.; Tanaka,
H.; Kashiwa, N.; Fujita, T. Organometallics 2001, 20, 4793.
(4) Dawson, D. M.; Walker, D. A.; Thornton-Pett, M.; Bochmann, M.
J. Chem. Soc., Dalton Trans. 2000, 459.
(5) Yoshida, Y.; Nakano, T.; Tanaka, H.; Fujita, T. Isr. J. Chem. 2002,
42, 353.
(6) Yoshida, Y.; Saito, J.; Mitani, M.; Takagi, Y.; Matsui, S.; Ishii, S.;
Nakano, T.; Kashiwa, N.; Fujita, T. Chem. Commun. 2002, 1298.
(7) Matsui, S.; Spaniol, T. P.; Takagi, Y.; Yoshida, Y.; Okuda, J. J. Chem.
Soc., Dalton Trans. 2002, 4529.
(8) Yoshida, Y.; Nakano, T.; Tanaka, H.; Fujita, T. Isr. J. Chem. 2002,
42, 353.
(9) Matsui, S.; Yoshida, Y.; Takagi, Y.; Spaniol, T. P.; Okuda, J. J.
Organomet. Chem. 2004, 689, 1155.
(10) Yoshida, Y.; Mohri, J.; Ishii, S.; Mitani, M.; Saito, J.; Matsui, S.;
Makio, H.; Nakano, T.; Tanaka, H.; Onda, M.; Yamamoto, Y.; Mizuno,
A.; Fujita, T. J. Am. Chem. Soc. 2004, 126, 12023.
(11) Yoshida, Y.; Matsui, S.; Fujita, T. J. Organomet. Chem. 2005, 690,
4382.
1
precursors I and II with MAO by H and 13C NMR spectros-
(14) Pennington, D. A.; Coles, S. J.; Hursthouse, M. B.; Bochmann, M.;
Lancaster, S. J. Chem. Commun. 2005, 3150.
(15) Pennington, D. A.; Coles, S. J.; Hursthouse, M. B.; Bochmann, M.;
Lancaster, S. J. Macromol. Rapid Commun. 2006, 27, 599.
(16) Matsuo, Y.; Mashima, K.; Tani, K. Chem. Lett. 2000, 1114.
(17) Tsurugi, H.; Yamagata, T.; Tani, K.; Mashima, K. Chem. Lett. 2003,
32, 756.
(18) Bryliakov, K. P.; Kravtsov, E. A.; Pennington, D. A.; Lancaster, S.
J.; Bochmann, M.; Brintzinger, H. H.; Talsi, E. P. Organometallics 2005,
24, 5660.
(12) Matsui, S.; Spaniol, T. P.; Takagi, Y.; Yoshida, Y.; Okuda, J. J.
Chem. Soc., Dalton Trans. 2002, 4017.
(13) Tsurugi, S.; Mashima, K. Organometallics 2006, 25, 5210.
(19) Makio, H.; Fujita, T. Macromol. Symp. 2004, 213, 221.
(20) Makio, H.; Oshiki, T.; Takai, K.; Fujita, T. Chem. Lett. 2005, 34,
1382.
10.1021/om0607752 CCC: $37.00 © 2007 American Chemical Society
Publication on Web 12/09/2006