6956
S. Bowers et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6952–6956
4. (a) Sparey, T.; Beher, D.; Best, J.; Biba, M.; Castro, J. L.; Clarke, E.; Hannam, J.;
O
S
O
S
CH3
Harrison, T.; Lewis, H.; Madin, A.; Shearman, M.; Sohal, B.; Tsou, N.; Welch, C.;
Wrigley, J. Bioorg. Med. Chem. Lett. 2005, 15, 4212; (b) Kitas, E. A.; Galley, G.;
Jakob-Roetne, R.; Flohr, A.; Wostl, W.; Mauser, H.; Alker, A. M.; Czech, C.;
Ozmen, L.; David-Pierson, P.; Jacobse, H.; Reinhardt, D. Bioorg. Med. Chem. Lett.
2008, 18, 304; (c) Prasad, C. V. C.; Zheng, M.; Vig, S.; Bergstrom, C.; Smith, D. W.;
Gao, Q.; Yeola, S.; Polson, C. T.; Corsa, J. A.; Guss, V. L.; Loo, A.; Wang, J.; Sleczka,
B. G.; Dangler, C.; Robertson, B. J.; Hendrick, J. P.; Roberts, S. B.; Barten, D. M.
Bioorg. Med. Chem. Lett. 2007, 17, 4006; (d) Pissarnitski, D. A.; Asberom, T.; Bara,
T. A.; Buevich, A. V.; Clader, J. W.; Greenlee, W. J.; Guzik, H. S.; Josien, H. B.; Li,
W.; McEwan, M.; McKittrick, B. A.; Nechuta, T. L.; Parker, E. M.; Sinning, L.;
Smith, E. M.; Song, L.; Vaccaro, H. A.; Voigt, J. H.; Zhang, L.; Zhang, Q.; Zhao, Z.
Bioorg. Med. Chem. Lett. 2007, 17, 57; (e) Jelley, R. A.; Elliott, J.; Gibson, K. R.;
Harrison, T.; Beher, D.; Clarke, E. E.; Lewis, H. D.; Shearman, M.; Wrigley, J. D. J.
Bioorg. Med. Chem. Lett. 2006, 16, 3839; (f) Fuwa, H.; Hiromoto, K.; Takahashi,
Y.; Yokoshima, S.; Kan, T.; Fukuyama, T.; Iwatsubo, T.; Tomita, T.; Natsugari, H.
Bioorg. Med. Chem. Lett. 2006, 16, 4184; (g) Asberom, T.; Zhao, Z.; Bara, T. A.;
Clader, J. W.; Greenlee, W. J.; Hyde, L. A.; Josien, H. B.; Li, W.; McPhail, A. T.;
Nomeir, A. A.; Parker, E. M.; Rajagopalan, M.; Song, L.; Wong, G. T.; Zhang, L.;
Zhang, Q.; Pissarnitski, D. A. Bioorg. Med. Chem. Lett. 2007, 17, 511; (h) Guo, T.;
Gu, H.; Hobbs, D. W.; Rokosz, L. L.; Stauffer, T. M.; Jacob, B.; Clader, J. W. Bioorg.
Med. Chem. Lett. 2007, 17, 3010; (i) Lewis, S. J.; Gu, H.; Hobbs, D. W.; Rokosz, L.
L.; Stauffer, T. M.; Jacob, B.; Clader, J. W. Bioorg. Med. Chem. Lett. 2005, 15, 373;
(j) Truong, A. P.; Aubele, D. A.; Probst, G. D.; Neitzel, M. L.; Semko, C. M.;
Bowers, S.; Dressen, D.; Hom, R. K.; Konradi, A. W.; Sham, H. L.; Garofalo, A. W.;
Keim, P. S.; Wu, J.; Dappen, M. S.; Wong, K.; Goldbach, E.; Quinn, K. P.;
Sauer, J.-M.; Brigham, E. F.; Wallace, W.; Nguyen, L.; Hemphill, S. S.; Bova, M. P.;
Basi, G. Bioorg. Med. Chem. Lett. 2009, 19, 4920.
Cl
O
H
N
Cl
O
S
S
S
N
S
a
b
c, d
N
N
15% in
2 steps
O
O
HN
N
O
47
48
45
46
Scheme 9. Reagents and conditions: (a) ACE, CH2Cl2, reflux, 6 h; (b) 4-chloro-
benzenesulfonyl chloride, Et3N, CH2Cl2, 2 h, rt, 15% (2 steps); (c) ethyl formate,
NaOEt, THF/EtOH, 0.5 h, 60 °C; (d) hydrazine monohydrate, AcOH, EtOH, 1 h, rt, 25%
(2 steps).
Table 4
Selected pharmacokinetic properties for compounds 1, 18 and 32
Compds
t1/2 (min)
Clearance (mL/h/kg)
AUC (nmol h/mL)
F%
1
18
32
24
61
69
2335
1707
1873
0.16
3.4
2.9
2
21
19
In summary, we have expanded the structure–activity relation-
ships of a series of N-bicyclic sulfonamide based -secretase inhib-
c
5. Siemers, E.; Skinner, M.; Dean, R. A.; Gonzales, C.; Satterwhite, J.; Farlow, M.;
Ness, D.; May, P. C. Clin. Neuropharmacol. 2005, 28, 126.
6. (a) The details of the discovery of compound 1 will be reported in due course;
(b) Bowers, S; Garofalo, A. W.; Hom, R. K.; Konradi, A. W.; Mattson, M. N.;
Neitzel, M. L.; Semko, C. M.; Truong, A. P.; Wu, J.; Xu, Y. Z. WO2007022502,
2007.
7. Gittos, M. W. Eur. Pat. Appl., EP330788, 1989.
8. (a) Kulinkovich, O.; Sviridov, S. V.; Vasilevski, D. A. Synthesis 1991, 234; (b)
Kulinkovich, O. G.; de Meijere, A. Chem. Rev. 2000, 100, 2789.
9. (a) Müller, S.; Liepold, B.; Roth, G.; Bestmann, H. J. Synlett 1996, 06, 521; (b)
Roth, G.; Liepold, B.; Müller, S.; Bestmann, H. J. Synthesis 2004, 1, 59; (c) Ohira,
S. Synth. Commun. 1989, 19, 561.
10. Yamamoto, S.; Sugimoto, H.; Tamura, O.; Mori, T.; Matsuo, N.; Ishibashi, N.
Tetrahedron 2004, 60, 8919.
itors. The introduction of substituents in one region of the bicyclic
scaffold resulted in improvements in the compounds’ metabolic
stabilities. These metabolic improvements were reflected in an im-
proved in vivo pharmacokinetic profile. The advances reported
here will allow further development of this series of compounds
as disease modifying agents in the treatment of Alzheimer’s
Disease.
Acknowledgments
11. Compound, initially diluted with DMSO, was incubated with gamma secretase
prepared from IMR-32 cell membranes. The reaction, at 37 °C, was initiated by
the addition of MBPC-125 Swedish substrate for two hours, and then quenched
by the addition of SDS. Quantification of cleaved substrate was determined by
an Ab40 specific ELISA assay. Values are means of three experiments.
We would like to thank Matthew Mattson, J. Labbe, Lanny Rus-
lim, David Nakamura, Heather Zhang, Bushan Samant, Michael Lee,
Terence Hui, Kevin Tanaka, Lany Ruslim, Pamela Keim, Jacek Jagod-
zinski, David Quincy, and Lee Latimer for their contributions to this
work.
12. Percentage of compound (1 lM) remaining after 30 min incubation in liver
microsomes (0.5 mg protein) supplemented with 1 mM NADPH at 37 °C in
phosphate buffer (m = mouse, h = human).
References and notes
13. Percentage of compound (2
lM) remaining after 30 min incubation in liver
microsomes (0.5 mg protein) supplemented with 1 mM UDPGA, 100 mM
MgCl2 and 50
h = human).
lg/mL alamethacin at 37 °C in phosphate buffer (m = mouse,
1. Ferri, C.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.;
Hasegawa, K.; Hendrie, H.; Huang, Y. The Lancet 2005, 366, 2112.
2. Hardy, J.; Selkoe, D. J. Science 2002, 297, 353.
3. Schmidt, B.; Baumann, S.; Braun, H. A.; Larbig, G. Curr. Top. Med. Chem. 2006, 6,
377.
14. Saunders, J.; Cassidy, M.; Freedman, S. B.; Harley, E. A.; Iversen, L. L.; Kneen, C.;
MacLeod, A. M.; Merchant, K. J.; Snow, R. J.; Baker, R. J. Med. Chem. 1990, 33,
1128.