C O M M U N I C A T I O N S
Table 2. Enantioselective Synthesis of Allenesa
active allenic esters. In addition, the results described here confirmed
that the mechanism involves ylide olefination. The high enantio-
selectivity, the neutral condition, and the fact that the phosphine
could be recovered and reused make the current method potentially
useful in organic synthesis.
Acknowledgment. We are grateful for the financial support
from the Natural Sciences Foundation of China, the Major State
Basic Research Development Program (Grant No. 2006CB806105),
and The Science and Technology Commission of Shanghai
Municipality.
entry
R1
R2
1
yield (%)b
ee (%)c
1
2
3
4
5
6
7
Ph
Ph
Ph
Me
Et
n-Pr
Et
Et
Et
1a
1bd
1r
1i
1h
1g
1s
72
90
87
86
81
83
80
93
97
93
97
96
97
98
o-Me-C6H4
p-MeO-C6H4
p-Cl-C6H4
p-Br-C6H4
Supporting Information Available: Detailed experimental pro-
cedures and characterization data for all new compounds (PDF). This
Et
a For detailed procedures, please see the Supporting Information.
b Isolated yield. c Determined by chiral HPLC. d 1b was assigned as
S-configuration by comparing its optical rotation with the literature.
References
(1) For selected reviews, see: (a) Maryanoff, B. E.; Reitz, A. B. Chem. ReV.
1989, 89, 863. (b) Cristau, H.-J. Chem. ReV. 1994, 94, 1299. (c) Rein, T.;
Pederson, T. M. Synthesis 2002, 5, 579.
(2) For catalytic Wittig-type olefination, see: (a) Shi, L.; Wang, W.; Wang,
Y.; Huang, Y.-Z. J. Org. Chem. 1989, 54, 2027. (b) Huang, Z.-Z.; Ye,
S.; Xia, W.; Tang, Y. Chem. Commun. 2001, 1384. (c) Huang, Z.-Z.; Ye,
S.; Xia, W.; Yu, Y.-H.; Tang, Y. J. Org. Chem. 2002, 67, 3096. (d) Huang,
Z.-Z.; Tang, Y. J. Org. Chem. 2002, 67, 5320. (e) Li, K.; Ran, L.; Yu,
Y.-H.; Tang, Y. J. Org. Chem. 2004, 69, 3986.
Scheme 2. Effects of Ylides on the Synthesis of Chiral Allene 1b
(3) For selected examples, see: (a) Lu, X.; Fang, H.; Ni, Z. J. Organomet.
Chem. 1989, 373, 77. (b) Huang, Y.-Z.; Liao, Y. Tetrahedron Lett. 1990,
31, 5897. (c) Herrmann, W. A.; Wang, M. Angew. Chem., Int. Ed. Engl.
1991, 30, 1641. (d) Ledford, B. E.; Carreira, E. M. Tetrahedron Lett.
1997, 38, 8125. (e) Fujimura, O.; Honma, T. Tetrahedron Lett. 1998, 39,
625. (f) Lebel, H.; Paquet, V.; Proulx, C. Angew. Chem., Int. Ed. 2001,
40, 2887. (g) Mirafzal, G. A.; Cheng, G.; Woo, L. K. J. Am. Chem. Soc.
2002, 124, 176. (h) Chen, Y.; Huang, L.; Ranade, M. A.; Zhang, X. P. J.
Org. Chem. 2003, 68, 3714. (i) Santos, A. M.; Romao, C. C.; Kuhn, F. E.
J. Am. Chem. Soc. 2003, 125, 2414. (j) Aggarwal, V. K.; Fulton, J. R.;
Sheldon, C. G.; de Vincente, J. J. Am. Chem. Soc. 2003, 125, 6034. (k)
Santos, A. M.; Pedro, F. M.; Yogalekar, A. A.; Lucas, I. S.; Romao, C.
C.; Kuhn, F. E. Chem.sEur. J. 2004, 10, 6313. (l) Zhu, S.; Liao, Y.;
Zhu, S. Org. Lett. 2004, 6, 377.
(4) (a) Cheng, G.; Mirafzal, G. A.; Woo, L. K. Organometallics 2003, 22,
1468. (b) Lee, M.-Y.; Chen, Y.; Zhang, X. P. Organometallics 2003, 22,
4905. (c) Chen, Y.; Huang, L.; Zhang, X. P. J. Org. Chem. 2003, 68,
5925. (d) Chen, Y.; Huang, L.; Zhang, X. P. Org. Lett. 2003, 5, 2493.
(5) (a) Ye, S.; Huang, Z.-Z.; Xia, C.-A.; Tang, Y.; Dai, L. X. J. Am. Chem.
Soc. 2002, 124, 2432. (b) Liao, W.-W.; Li, K.; Tang, Y. J. Am. Chem.
Soc. 2003, 125, 13030. (c) Zheng, J.-C.; Liao, W.-W.; Tang, Y.; Sun,
X.-L.; Dai, L.-X. J. Am. Chem. Soc. 2005, 127, 12222. (d) Deng, X.-M.;
Cai, P.; Ye, S.; Sun, X.-L.; Liao, W.-W.; Li, K.; Tang, Y.; Wu, Y.-D.;
Dai, L.-X. J. Am. Chem. Soc. 2006, 128, 9730. (e) Li, C.-Y.; Sun, X.-L.;
Jing, Q.; Tang, Y. Chem. Commun. 2006, 2980.
Scheme 3. Phosphine Recovered and Reused
(6) (a) Calter, M. A.; Orr, R. K.; Song, W. Org. Lett. 2003, 5, 4745. (b)
Nelson, S. G.; Zhu, C.; Shen, X. J. Am. Chem. Soc. 2004, 126, 14.
(7) Hoffman-Roder, A.; Krause, N. Angew. Chem., Int. Ed. 2004, 43, 1196
and references cited therein.
(8) For a recent book, see: Modern Allene Chemistry; Krause, N., Hashmi,
A. S. K., Eds.; Wiley-VCH: Weinheim, Germany, 2004. For recent
reviews, see: (a) Zimmer, R.; Dinesh, C.; Nandanan, E.; Khan, F. Chem.
ReV. 2000, 100, 3067. (b) Marshall, J. Chem. ReV. 2000, 100, 3163. (c)
Hashmi, A. S. K. Angew. Chem., Int. Ed. 2000, 39, 3590. (d) Bates, R.;
Satcharoen, V. Chem. Soc. ReV. 2002, 31, 12. (e) Sydnes, L. Chem. ReV.
2003, 103, 1133. (f) Ma, S. Acc. Chem. Res. 2003, 36, 701. (g) Lu, X.;
Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535. (h) Wei, L.-L.; Xiong,
H.; Hsung, R. P. Acc. Chem. Res. 2003, 36, 773. (i) Ma, S. Chem. ReV.
2005, 105, 2829. (j) Tius, M. Acc. Chem. Res. 2003, 36, 284.
(9) For a review of the enantioselective synthesis of allenes, see: (a) Hoffman-
Roder, A.; Krause, N. Angew. Chem., Int. Ed. 2002, 41, 2933. For recent
examples, see: (b) Yamazaki, J.; Watanabe, T.; Tanaka, K. Tetrahe-
dron: Asymmetry 2001, 12, 669. (c) Han, J. W.; Tokunaga, N.; Hayashi,
T. J. Am. Chem. Soc. 2001, 123, 12915. (d) Sherry, B. D.; Toste, F. D. J.
Am. Chem. Soc. 2004, 126, 15978. (e) Hayashi, T.; Tokunaga, N. Inoue,
K. Org. Lett. 2004, 6, 305. (f) Pinho e Melo, T. M. V. D.; Cardoso, A.
L.; Rocha Gonsalves, A. M. A.; Pessoa J. C.; Paixao˜, J. A.; Beja, A. M.
Eur. J. Org. Chem. 2004, 4830. (g) Imada, Y.; Nishida, M.; Kutsuwa,
K.; Murahashi, S.-I.; Naota, T. Org. Lett. 2005, 7, 5837. (h) Trost, B. M.;
Fandrick, D. R.; Dinh, D. C. J. Am. Chem. Soc. 2005, 127, 14186. (i)
Molander, G. A.; Sommers, E. M.; Baker, S. R. J. Org. Chem. 2006, 71,
1563.
from their corresponding salts 5a and 5b, respectively. It was found
that ylide 6a gave the desired product 1b in 88% yield with 96%
ee, which is consistent with the experimental observation (entry 2,
Table 2). However, diylide 6b afforded the enantiomer of 1b in
37% yield with -20% ee. These results, together with the fact that
83% of monophosphine oxide 7 was isolated in the reaction of
2-phenylpent-1-en-1-one with ylide generated in situ (entry 3 in
Table 2), showed clearly that the monoylide 6a is the intermediate
and further confirmed the mechanism Woo et al. proposed.
Noticeably, the recovered chiral phosphine oxide could be readily
reduced by HSiCl3 and reused. For example, 1r could be obtained
with 94% ee in 83% yield using the recovered compound 4 as the
phosphine (Scheme 3), comparable to the results when phosphine
4 was first used (entry 3 in Table 2).
In summary, we have developed an efficient method for the
synthesis of allenes under neutral conditions by olefination of
ketenes with EDA in the presence of Ph3P and catalytic Fe(TCP)-
Cl for the first time. We have also realized its asymmetric version
and found that, by employing chiral phosphine instead of PPh3,
chiral allenes could be synthesized with high enantioselectivities
(93-98% ee) in good yields, providing an easy access to optically
(10) For detailed procedure, please see Supporting Information.
(11) For reviews on asymmetric Wittig-type reactions, see: (a) Li, A.-H.; Dai,
L.-X.; Aggarwal, V. K. Chem. ReV. 1997, 97, 2341. (b) Rein, T.; Pedersen,
T. M. Synthesis 2002, 579. (c) Lertpibulpanya, D.; Marsden, S. P.;
Rodriguez-Garcia, I.; Kilner, C. A. Angew. Chem., Int. Ed. 2006, 45, 5000.
(d) Dai, W.-M.; Wu, A.; Wu, H. Tetrahedron: Asymmetry 2002, 2187.
JA068642V
9
J. AM. CHEM. SOC. VOL. 129, NO. 6, 2007 1495