4588
K. R. Marks et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4585–4588
18. Naik, P. N.; Chimatadar, S. A.; Nandibewoor, S. T. Ind. Eng. Chem. Res. 2009, 48,
2548.
19. Pucci, M. J.; Ackerman, M.; Thanassi, J. A.; Shoen, C. M.; Cynamon, M. H.
Antimicrob. Agents Chemother. 2010, 54, 3478.
20. Molina-Torres, C. A.; Ocampo-Candiani, J.; Rendon, A.; Pucci, M. J.; Vera-
Cabrera, L. Antimicrob. Agents Chemother. 2010, 54, 2188.
21. Vera-Cabrera, L.; Campos-Rivera, M. P.; Escalante-Fuentes, W. G.; Pucci, M. J.;
Ocampo-Candiani, J.; Welsh, O. Antimicrob. Agents Chemother. 2010, 54, 2191.
22. Beylin, V.; Boyles, D. C.; Curran, T. T.; Macikenas, D.; Parlett, R. V.; Vrieze, D.
Org. Proc. Res. Dev. 2007, 11, 441.
23. Colotta, V.; Catarzi, D.; Varano, F.; Calabri, F. R.; Filacchioni, G.; Costagli, C.;
Galli, A. Bioorg. Med. Chem. Lett. 2004, 14, 2345.
24. Ellsworth, E. L.; Tran, T. P.; Showalter, H. D.; Sanchez, J. P.; Watson, B. M.; Stier,
M. A.; Domagala, J. M.; Gracheck, S. J.; Joannides, E. T.; Shapiro, M. A.; Dunham,
S. A.; Hanna, D. L.; Huband, M. D.; Gage, J. W.; Bronstein, J. C.; Liu, J. Y.; Nguyen,
D. Q.; Singh, R. J. Med. Chem. 2006, 49, 6435.
25. German, N.; Malik, M.; Rosen, J. D.; Drlica, K.; Kerns, R. J. Antimicrob. Agents
Chemother. 2008, 52, 3915.
26. Huband, M. D.; Cohen, M. A.; Zurack, M.; Hanna, D. L.; Skerlos, L. A.; Sulavik, M.
C.; Gibson, G. W.; Gage, J. W.; Ellsworth, E.; Stier, M. A.; Gracheck, S. J.
Antimicrob. Agents Chemother. 2007, 51, 1191.
27. Rivero, I. A.; Espinoza, K.; Somanathan, R. Molecules 2004, 9, 609.
28. Tran, T. P.; Ellsworth, E. L.; Sanchez, J. P.; Watson, B. M.; Stier, M. A.; Showalter,
H. D.; Domagala, J. M.; Shapiro, M. A.; Joannides, E. T.; Gracheck, S. J.; Nguyen,
D. Q.; Bird, P.; Yip, J.; Sharadendu, A.; Ha, C.; Ramezani, S.; Wu, X.; Singh, R.
Bioorg. Med. Chem. Lett. 2007, 17, 1312.
29. Tran, T. P.; Ellsworth, E. L.; Watson, B. M.; Sanchez, J. P.; Hollis Showalter, H. D.;
Rubin, J. R.; Stier, M. A.; Yip, J.; Nguyen, D. Q.; Bird, P.; Singh, R. J. Heterocycl.
Chem. 2005, 42, 669.
30. Ellsworth, E.; Showalter, H. D. U.S. Patent #0114458.A1, 2003.
31. Wang, Q.; Lucien, E.; Hashimoto, A.; Pais, G. C.; Nelson, D. M.; Song, Y.;
Thanassi, J. A.; Marlor, C. W.; Thoma, C. L.; Cheng, J.; Podos, S. D.; Ou, Y.;
Deshpande, M.; Pucci, M. J.; Buechter, D. D.; Bradbury, B. J.; Wiles, J. A. J. Med.
Chem. 2007, 50, 199.
32. Reuman, M.; Eissenstat, M. A.; Weaver, J. D. Tetrahedron Lett. 1994, 35, 8303.
Decarboxylated ciprofloxacin was prepared as follows: 65.1 mg (0.20 mmol)
ciprofloxacinÁHCl and 40.6 mg (0.82 mmol) NaCN were stirred in 2 mL DMSO at
100 °C for 17 h. Product 13 was purified by semi-preparative HPLC.
Descarboxymoxifloxacin (15) was prepared similarly. 13 1H NMR (DMSO-d6)
d 1.04 (br s, 2H), 1.21 (br d, J = 6.6 Hz, 2H), 3.34 (br s, 4H), 3.42 (m, 4H), 3.57 (m,
1H), 6.00 (d, J = 7.4 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.77 (d, JH-F = 13.9 Hz, 1H),
7.98 (d, J = 8.2 Hz, 1H). 19F NMR À126.30. MS, ESI, calcd (M+H+) 288.14, found
288.24.
33. Compound 5a was prepared by stirring 182.7 mg (0.45 mmol) 4a and 53.0 mg
(0.47 mmol) KOtBu in toluene while heating to reflux for 19 h. Product 5a was
purified by flash column eluted with 3:1 hexanes. 1H NMR (CDCl3) d 0.69 (br s,
2H), 1.17 (br s, 2H), 1.34 (m, 6H), 3.06 (q, J = 7.4 Hz, 2H), 3.70 (m, 1H), 4.06 (d,
J = 2.3 Hz, 3H), 4.38 (q, J = 7.1 Hz, 2H), 7.75 (dd, 1H). 19F NMR (CDCl3) d À146.03
(m, 1F), À137.12 (m, 1F). MS, ESI, calcd (M+H+) 384.10, found 384.02.
Compound 5b was prepared similarly.
34. Compound 6a was prepared by stirring 37.8 mg (0.10 mmol) 5a with 44.3 mg
(0.5 mmol) piperazine in 2 mL DMF at 130 °C for 26 h. Product was purified by
semi-preparative HPLC. Compounds 6b–d were prepared similarly. Compound
6b 1H NMR (CD3CN) d 0.62 (br s, 2H), 0.99 (br s, 2H), 1.31 (m, 6H), 1.83 (m, 4H),
2.73 (m, 1H), 3.06 (m, 4H), 3.35 (m, 1H), 3.55 (s, 3H), 3.74 (m, 1H), 3.89 (br s,
1H), 4.04 (t, J = 1.1 Hz, 1H), 4.29 (dq, J = 7.1, 1.6 Hz, 2H), 7.32 (d, JH-F = 12.8 Hz,
1H), 9.70 (br s, 1H). MS, ESI, calcd (M+H+) 490.21, found 490.18.
35. Compound 7a was prepared by stirring 71 mg 6a in 1 mL fuming sulfuric acid
for 2 h. Product was purified by semi-preparative HPLC and confirmed by ESI
MS, calcd (M+H+) 422.15, found 422.03. Compound 7b was prepared similarly.
MS, ESI, calcd (M+H+) 462.18, found 462.11.
MICs reported in the literature for ulifloxacin and for other C-2-S
substituted quinolones in which the C-2 sulfur is incorporated into
a fused ring system such as isothiazolidinone (isothiazoquinolones)
and thiazetidine (ulifloxacin) rings (Fig. 1).19–21 Similar results were
found when direct inhibition and poisoning of purified gyrase was
characterized: the C-2-thioalkyl compounds were orders of magni-
tude less active than the fused-ring congeners (data not shown).
A likely reason for the improved activity of isothiazole- and
thiazetidine-containing fluoroquinolones is binding interactions
with gyrase involving the C-2 sulfur atom. However, addition of
thioalkyl groups to position 2 of quinolones, as described in this
work, while modestly enhancing activity over 2-unsubstituted
3-descarboxy fluoroquinolone, does not enhance antibacterial
activity. Molecular modeling studies provide a likely explanation
for this dramatic difference in activity for C-2-thioalkyl versus
C-2-S-fused ring compounds. As shown ( Fig. 2, panel A), steric
conflict between a C-2-thioalkyl group and the 3-carboxylate
moiety significantly distorts orientation of the 2-thioalky group
and carboxylate out of planarity with the quinolone core. In
contrast, when the C-2 sulfur atom is incorporated into a fused ring
system, the 3-carboxylate and fused ring system remains co-planar
with the quinolone ring system (exemplified by ulifloxacin in
Fig. 2, panel B).
In conclusion, we have identified structural features of 2-thio
derivatives of fluoroquinolones that contribute to both increased
and decreased antibacterial activity. Synthetic methods employed
in this work have revealed additional types of 1,4-addition reac-
tions that can be exploited to functionalize position 2 on the fluo-
roquinolone core. Thus guided by these results and the recently
reported quinolone–topoisomerase–DNA crystal structures, we
are now working to characterize the potential binding interactions
of a C-2-sulfur in the drug–topoisomerase complex and to synthe-
size new type II topoisomerase inhibitors that will be active against
mutants resistant to current agents.
Acknowledgment
This work was supported by NIH Grants R01-AI73491 and
R01-AI087671.
References and notes
1. Drlica, K.; Malik, M.; Kerns, R. J.; Zhao, X. Antimicrob. Agents Chemother. 2008,
52, 385.
2. Kresse, H.; Belsey, M. J.; Rovini, H. Nat. Rev. Drug Disc. 2007, 6, 19.
3. Drlica, K.; Malik, M. Curr. Top. Med. Chem. 2003, 3, 249.
4. Gould, K. A.; Pan, X. S.; Kerns, R. J.; Fisher, L. M. Antimicrob. Agents Chemother.
2004, 48, 2108.
5. Wang, J. C. Annu. Rev. Biochem. 1996, 65, 635.
36. Compound 9a was prepared by stirring 6a in 0.1 M H2SO4 solution at reflux for
24 h. Pure 9a was recovered by semi-preparative HPLC. 9b–d and 15 were
prepared similarly. Compound 9b 1H NMR (DMSO-d6) d 0.68 (br d, 2H), 1.13 (br
d, 2H), 1.33 (t, 3H), 1.73 (m, 4H), 2.64 (m, 1H), 3.03 (m, 4H), 3.23 (d, 1H), 3.49
(s, 3H), 3.58 (m, 2H), 3.69 (m, 1H), 3.88 (m, 1H), 4.03 (m, 1H), 6.08 (s, 1H), 7.40
(d, 1H), 8.59 (br s, 1H), 9.26 (br d, 1H). MS, ESI, calcd (M+H+) 418.19, found
418.22.
37. Ma, S.; Zhang, J.; Wang, E.; Wang, Q. Zhongguo Yaowu Huaxue Zazhi 2005, 15,
347.
38. Segawa, J.; Kitano, M.; Kazuno, K.; Matsuoka, M.; Shirahase, I.; Ozaki, M.;
Matsuda, M.; Tomii, Y.; Kise, M. J. Med. Chem. 1992, 35, 4727.
39. Segawa, J.; Kitano, M.; Kazuno, K.; Tsuda, M.; Shirahase, I.; Ozaki, M.; Matsuda,
M.; Kise, M. J. Heterocycl. Chem. 1992, 29, 1117.
6. Zhao, X.; Quinn, B.; Kerns, R.; Drlica, K. J. Antimicrob. Chemother. 2006, 58, 1283.
7. Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L. Nat. Rev. Drug Disc.
2007, 6, 29.
8. Boucher, H. W.; Talbot, G. H.; Bradley, J. S.; Edwards, J. E.; Gilbert, D.; Rice, L. B.;
Scheld, M.; Spellberg, B.; Bartlett, J. Clin. Infect. Dis. 2009, 48, 1.
9. Talbot, G. H.; Bradley, J.; Edwards, J. E., Jr.; Gilbert, D.; Scheld, M.; Bartlett, J. G.
Clin. Infect. Dis. 2006, 42, 657.
10. Kim, O. K.; Ohemeng, K.; Barrett, J. F. Expert Opin. Invest. Drugs 2001, 10, 199.
11. Emmerson, A. M.; Jones, A. M. J. Antimicrob. Chemother. 2003, 51, 13.
12. Gootz, T. D.; Brighty, K. E. Med. Res. Rev. 1996, 16, 433.
13. Domagala, J. M. J. Antimicrob. Chemother. 1994, 33, 685.
14. Bax, B. D.; Chan, P. F.; Eggleston, D. S.; Fosberry, A.; Gentry, D. R.; Gorrec, F.;
Giordano, I.; Hann, M. M.; Hennessy, A.; Hibbs, M.; Huang, J.; Jones, E.; Jones, J.;
Brown, K. K.; Lewis, C. J.; May, E. W.; Saunders, M. R.; Singh, O.; Spitzfaden, C.
E.; Shen, C.; Shillings, A.; Theobald, A. J.; Wohlkonig, A.; Pearson, N. D.; Gwynn,
M. N. Nature 2010, 466, 935.
40. Matsuoka, M.; Segawa, J.; Amimoto, I.; Masui, Y.; Tomii, Y.; Kitano, M.; Kise, M.
Chem. Pharm. Bull. (Tokyo) 1999, 47, 1765.
41. Segawa, J.; Kazuno, K.; Matsuoka, M.; Amimoto, I.; Ozaki, M.; Matsuda, M.;
Tomii, Y.; Kitano, M.; Kise, M. Chem. Pharm. Bull. (Tokyo) 1995, 43, 1238.
42. Segawa, J.; Kazuno, K.; Matsuoka, M.; Shirahase, I.; Ozaki, M.; Matsuda, M.;
Tomii, Y.; Kitano, M.; Kise, M. Chem. Pharm. Bull. (Tokyo) 1995, 43, 63.
43. Dinakaran, M.; Senthilkumar, P.; Yogeeswari, P.; China, A.; Nagaraja, V.; Sriram,
D. J. Med. Chem. 2008, 4, 482.
15. Wohlkonig, A.; Chan, P. F.; Fosberry, A. P.; Homes, P.; Huang, J.; Kranz, M.;
Leydon, V. R.; Miles, T. J.; Pearson, N. D.; Perera, R. L.; Shillings, A. J.; Gwynn, M.
N.; Bax, B. D. Nat. Struct. Mol. Biol. 2010, 17, 1152.
16. Laponogov, I.; Sohi, M. K.; Veselkov, D. A.; Pan, X. S.; Sawhney, R.; Thompson, A.
W.; McAuley, K. E.; Fisher, L. M.; Sanderson, M. R. Nat. Struct. Mol. Biol. 2009, 16,
667.
44. Taguchi, M.; Kondo, H.; Inoue, Y.; Kawahata, Y.; Jinbo, Y.; Sakamoto, F.;
Tsukamoto, G. J. Med. Chem. 1992, 35, 94.
17. Laponogov, I.; Pan, X. S.; Veselkov, D. A.; McAuley, K. E.; Fisher, L. M.;
Sanderson, M. R. PLoS One 2010, 5, e11338.