1082 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 5
Brief Articles
(5) (a) Kusunoki, J.; Kanatani; A.; Moller, D. E. Modulation of Fatty
Acid Metabolism As A Potential Approach to the Treatment of Obe-
sity and the Metabolic Syndrome. Endocrine 2006, 29 (1), 91-100.
(6) Munday, M. R.; Hemingway, C. J. The Regulation of Acetyl-CoA
Carboxylase-A Potential Target for the Action of Hypolipidemic
Agents. AdV. Enzyme Regul. 1999, 39, 205-234.
(7) Ruderman, N. B.; Saha, A. K.; Vavvas, D.; Witters, L. A. Malonyl-
CoA, Fuel Sensing, and Insulin Resistance. Am. J. Physiol. 1999,
276, E1-E18.
(8) Ruderman, N. B.; Saha, A. K.; Kraegen, E. W. Minireview: Malonyl
CoA, AMP-Activated Protein Kinase, and Adiposity. Endocrinology
2003, 144 (12), 5166-5171.
(9) Mao, J.; Chirala, S. S.; Wakil, S. J. Human Acetyl-CoA Carboxylase
1 Gene: Presence of Three Promoters and Heterogeneity at the 5′-
Untranslated mRNA Region. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
7515-7520.
(10) Abu-Elheiga, L.; Almarza-Ortega, D. B.; Baldini, A.; Wakil, S. J.
Human Acetyl-CoA Carboxylase 2, Molecular Cloning, Characteriza-
tion, Chromosomal Mapping, and Evidence for Two Isoforms. J. Biol.
Chem. 1997, 272, 10669-10677.
(11) Abu-Elheiga, L.; Matzuk, M. M.; Kordari, P.; Oh, W.; Shaikenov,
T.; Gu, Z.; Wakil, S. J. Mutant Mice Lacking Acetyl-CoA Carboxy-
lase 1 Are Embryonically Lethal. Proc. Natl. Acad. Sci. U.S.A. 2005,
102 (34), 12011-12016.
(12) Abu-Elheiga, L.; Matzuk, M. M.; Abo-Hashema, K. A. H.; Wakil,
S. J. Continuous Fatty Acid Oxidation and Reduced Fat Storage in
Mice Lacking Acetyl-CoA Carboxylase 2. Science 2001, 291, 2613-
2616.
(13) Abu-Elheiga, L.; Oh, W.; Kordari, P.; Wakil, S. J. Acetyl-CoA
Carboxylase 2 Mutant Mice Are Protected Against Obesity and
Diabetes Induced by High-fat/High-carbohydrate Diets. Proc. Natl.
Acad. Sci. U.S.A. 2003, 100, 10207-10212.
45 mg/kg. The compounds were dosed using poly(ethylene glycol)
400 (PEG-400) as the vehicle. The cardiac contractility results are
expressed as mean ( SEM (n ) 3 rats per compound).
Gene Expression Analysis. Male Sprague-Dawley rats [Crl:
CD(SD)IGS BR] weighing approximately 200∼250 g were obtained
from Charles River Laboratories, Inc., Portage, MI. The animals
were treated with 100 mg/kg 9-(S) (active), 9-(R) (inactive), 1-(S)
(active), and 1-(R) (inactive) twice daily (b.i.d) by oral gavage for
a period of 3 days and sacrificed on day 4. Vehicle control was
H2O containing 1% Tween. The hearts were snap-frozen in liquid
nitrogen for RNA isolation. Experiments were performed according
to the guidelines established in the National Institutes of Health
Guide for the Care and Use of Laboratory Animals. Frozen heart
samples were immediately added to TRIzol reagent (Invitrogen Life
Technologies, Carlsbad, CA) and homogenized using a Polytron
300D homogenizer (Brinkman Instruments, Westbury, NY). One
mL of the tissue homogenate was transferred to a microfuge tube,
and total RNA was isolated from the TRIzol extracts following
the standard protocol provided by the manufacturer (Invitrogen Life
Technologies, Carlsbad, CA). The quality of total RNA was
monitored using the RNA 6000 Nano Assay with the 2100 Agilent
Bioanalyzer (Agilent Technologies, Palo Alto, CA). The microarray
experiment was performed on Affymetrix RAE230A GeneChip
according to the manufacturer’s protocol, with the exception that
the primer used for the reverse transcription reaction was the
GeneChip T7-Oligo(T) Promoter Primer Kit (Affymetrix, Santa
Clara, CA).
The microarray scanned image and intensity files were imported
into Rosetta Resolver gene expression analysis software version
5.0 (Rosetta Inpharmatics, Seattle, WA). Resolver’s Affymetrix
error model was applied, and ratios were built for each treatment
versus the vehicle controls. Principal components analysis was
completed using Spotfire Decision Site version 8.0 (Spotfire,
Somerville, MA). The similarity of gene expression profiles of the
test compound and reference compounds from the DrugMatrix
database (Iconix Pharmaceuticals, Mountain View, CA) was
calculated as the Pearson’s correlation coefficient based on the
common genes shared by the Affymetrix RAE230A and Codelink
RU1 (GE Healthcare, Piscataway, NJ).
(14) Gu, Y. G.; Weitzberg, M.; Clark, R. F.; Xu, X.; Li, Q.; Zhang T.;
Hansen, T. M.; Liu, G.; Xin, Z.; Wang, X.; Wang, R.; McNally, T.;
Zinker, B. A.; Frevert, E. U.; Camp, H. S.; Beutel, B. A.; Sham, H.
L. Synthesis and Structure-Activity Relationships of N-{3-[2-(4-
Alkoxyphenoxy)thiazol-5-yl]-1-methylprop-2-ynyl}carboxy Deriva-
tives as Selective Acetyl-CoA Carboxylase 2 Inhibitors. J. Med.
Chem. 2006, 49 (13), 3770-3773.
(15) Polakowski, J. S.; Segreti, J. A.; Cox, B. F.; Hsieh, G. C.; Kolasa,
T.; Moreland, R. B.; Brioni, J. D. Effects of Selective Dopamine
Receptor Subtype Agonists on Cardiac Contractility and Regional
Haemodynamics in Rats. Clin. Exp. Pharmacol. Physiol. 2004, 31,
837-841.
(16) Reinhart, G. A.; Fryer, R. M.; Osinski, M. A.; Polakowski, J. S.;
Cox, B. F.; Gintant, G. A. Predictive, non-GLP Models of Secondary
Pharmacodynamics: Putting the Best Compounds Forward. Curr.
Opin. Chem. Biol. 2005, 9, 1-8.
Acknowledgment. We thank Dr. Xiaolin Zhang, Andy L.
Adler, and Todd N. Turner for technical support.
(17) Kym, P. R.; Souers, A. J.; Campbell, T. J.; Lynch, J. K.; Judd, A.
S.; Iyengar, R.; Vasudevan, A.; Gao, J.; Freeman, J. C.; Wodka, D.;
Mulhern, M.; Zhao, G.; Wagaw, S. H.; Napier, J. J.; Brodjian, S.;
Dayton, B. D.; Reilly, R. M.; Segreti, J. A.; Fryer, R. M.; Preusser,
L. C.; Reinhart, G. A.; Hernandez, L.; Marsh, K. C.; Sham, H. L.;
Collins, C. A.; Polakowski, J. S. Screening for Cardiovascular
Safety: A Structure-Activity Approach for Guiding Lead Selection
of Melanin Concentrating Hormone Receptor 1 Antagonists. J. Med.
Chem. 2006, 49, 2339-2352.
(18) Firouzabadi, H.; Sardarian, A. R.; Badparva, H. Highly Selective
Amidation of Benzylic Alcohols With Nitriles: A Modified Ritter
Reaction. Synth. Commun. 1994, 24 (5), 601-607.
(19) Childs, A. C.; Phaneuf, S. L.; Dirks, A. J.; Phillips, T.; Leeuwenburgh.
C. Doxorubicin Treatment In Vivo Causes Cytochrome c Release
and Cardiomyocyte Apoptosis, as well as Increased Mitochondrial
Efficiency, Superoxide Dismutase Activity, and Bcl-2:Bax Ratio.
Cancer Res. 2002, 62, 4592-4598.
(20) Ganter, B.; Tugendreich, S.; Pearson, C. I.; Ayanoglu, E.; Baum-
hueter, S.; Bostian, K. A.; Brady, L.; Browne, L. J.; Calvin, J. T.;
Day, G.-J.; Breckenridge, N.; Dunlea, S.; Eynon, B. P.; Furness, L.
M.; Ferng, J.; Fielden, M. R.; Fujimoto, S. Y.; Gong, L.; Hu, C.;
Idury, R.; Judo, M. S. B.; Kolaja, K. L.; Lee, M. D.; McSorley, C.;
Minor, J. M.; Nair, R. V.; Natsoulis, G.; Nguyen, P.; Nicholson, S.
M.; Pham, H.; Roter, A. H.; Sun, D.; Tan, S.; Thode, S.; Tolley, A.
M.; Vladimirova, A.; Yang, J.; Zhou, Z.; Jarnagin, K. Development
of A Large-scale Chemogenomics Database To Improve Drug
Candidate Selection and To Understand Mechanisms of Chemical
Toxicity and Action. J. Biotechnol. 2005, 119, 219-244.
Supporting Information Available: Synthetic procedures,
analytical and spectroscopic data of the new compounds and key
intermediates in Table 1, as well as 9-(S) and 9-(R), detailed protocol
of human ACC1 and ACC2 assays, pharmacokinetic data of
compounds 1-((), 9-((), 9-(S), and 9-(R). This material is available
References
(1) Turkoglu, C.; Duman, B. S.; Gunay, D.; Cagatay, P.; Ozcan, R.;
Buyukdevrim, A. S. Effect of Abdominal Obesity on Insulin
Resistence and the Components of the Metabolic Syndrome: Evi-
dence Supporting Obesity as the Central Feature. Obes. Surg. 2003,
13 (5), 699-705.
(2) Steyn, N. P.; Mann, J.; Bennett, P. H.; Temple, N.; Zimmet, P.;
Tuomilehto, J.; Lindstrom, J.; Louheranta, A. Diet, Nutrition and
the Prevention of Type 2 Diabetes. Public Health Nutr. 2004, 7 (1A),
147-165.
(3) Hulver, M. W.; Berggren, J. R.; Cortright, R. N.; Dudek, R. W.;
Thompson, R. P.; Pories, W. J.; MacDonald, K. G.; Cline, G. W.;
Shulman, G. I.; Dohm, G. L.; Houmard, J. A. Skeletal Muscle Lipid
Metabolism with Obesity. Am. J. Physiol.:Endocrinol. Metab. 2003,
284, E741-747.
(4) Sinha, R.; Dufour, S.; Petersen, K. F.; LeBon, V.; Enoksson, S.; Ma,
Y.-Z.; Savoye, M.; Rothman, D. L.; Shulman, G. I.; Caprio, S.
Assessment of Skeletal Muscle Triglyceride Content by 1H Nuclear
Magnetic Resonance Spectroscopy in Lean and Obese Adolescents:
Relationships to Insulin Sensitivity, Total Body Fat, and Central
Adiposity. Diabetes 2002, 51 (1), 1022-1027.
JM070035A