Organic & Biomolecular Chemistry
Paper
trifluoromethyl, acetyl, and carbomethoxy) and anilines (ether, 2 H), 5.52 (s, 1 H); 13C NMR (100.6 MHz) (CDCl3): δ = 158.8,
bromo, chloro, and carbethoxy).
148.5, 147.5, 142.6, 138.3, 136.1, 128.6, 128.5, 128.4, 128.1,
123.1, 121.1, 121.0, 118.4, 103.7; MS (EI ion source): m/z (%) =
272 (76 [M+]), 256 (16), 207 (13), 194 (26), 180 (55), 92 (18),
77 (100), 51 (23); HRMS: m/z [M + H]+ calcd for C19H17N2:
273.1386; found: 273.1393.
Experimental
A list of chemicals and instruments are provided in the ESI.†
Typical procedure for the preparation of 2-(arylethynyl)
pyridines (1): synthesis of 2-(phenylethynyl)pyridine (1a)
Conflicts of interest
There are no conflicts to declare.
A flask equipped with a magnetic stirring bar was charged
with PdCl2(PPh3)2 (49 mg, 0.07 mmol, 0.02 equiv.) and CuI
(26.5 mg, 0.14 mmol, 0.04 equiv.) dissolved in diisopropyl-
amine (7 mL) and N,N-dimethylformamide (5 mL). The resul-
tant solution was stirred under nitrogen at room temperature
for 10 minutes before adding 2-bromopyridine (553 mg,
3.5 mmol, 1.0 equiv.) in diisopropylamine (3 mL) and phenyl-
acetylene (428.5 mg, 461 μl, 4.2 mmol, 1.2 equiv.). Then, stir-
ring was continued at room temperature for an additional
hour. After this time, the reaction mixture was diluted with
Et2O and washed with a saturated NH4Cl solution and with
brine. The organic layer was separated, dried over Na2SO4, fil-
tered, and concentrated under reduced pressure. The residue
was purified by chromatography on SiO2 (25–40 μm) eluting
with an 85/15 (v/v) n-hexane/AcOEt mixture (Rf = 0.25) to
obtain 608.5 mg (97% yield) of 2-(phenylethynyl)pyridine 1a.
Acknowledgements
We gratefully acknowledge the University “La Sapienza”,
Rome, for financial backing and Flavio Cicconi for the practi-
cal support.
Notes and references
1 For selected reviews, see: (a) J. P. Adams, J. Chem. Soc.,
Perkin Trans. 1, 2000, 125; (b) J. R. Dehli, J. Legros and
C. Bolm, Chem. Commun., 2005, 973.
2 J. Barluenga, F. Aznar, R. Liz and R. Rodes, J. Chem. Soc.,
Perkin Trans. 1, 1980, 2732.
3 J. Barluenga and F. Aznar, Synthesis, 1977, 195.
4 (a) D. C. Leitch, P. R. Payne, C. R. Dunbar and L. L. Schafer,
J. Am. Chem. Soc., 2009, 131, 18246; (b) D. C. Leitch,
C. S. Turner and L. L. Schafer, Angew. Chem., Int. Ed., 2010,
49, 6382.
5 (a) N. Fukumoto, H. Asai, M. Shimizu and N. Chatani,
J. Am. Chem. Soc., 2007, 129, 13792; (b) K. Sakai, T. Kochi
and F. Kakiuchi, Org. Lett., 2011, 13, 3928.
Brown oil; IR (neat): 3054, 2919, 2222, 1580, 1490 cm−1
;
1H NMR (400.13 MHz) (DMSO d6): δ = 8.62 (ddd, J1 = 4.8 Hz,
J2 = 1.8 Hz, J3 = 1.0, 1 H), 7.86 (td, J1 = 7.7 Hz, J2 = 1.8 Hz, 1 H),
7.66–7.60 (m, 3 H), 7.48–7.45 (m, 3 H), 7.42 (ddd, J1 = 7.7 Hz,
J2 = 4.8 Hz, J3 = 1.0 Hz, 1 H);13C NMR (100.6 MHz) (DMSO d6):
δ = 150.6, 142.7, 137.2, 132.1, 129.0, 129.3, 127.8, 124.0, 121.9,
89.4, 88.8; MS (EI ion source): m/z (%) = 179 (100, [M+]), 151
(14), 126 (12); HRMS: m/z [M + H]+ calcd for C13H10N:
180.0808; found: 180.0808.
6 (a) Y. Uchimaru, Chem. Commun., 1999, 1133;
(b) H. W. Cheung, C. M. So, K. H. Pun, Z. Zhou and
C. P. Lau, Adv. Synth. Catal., 2011, 353, 411.
7 T. Tsuchimoto, K. Aoki, T. Wagatsuma and Y. Suzuki,
Eur. J. Org. Chem., 2008, 4035.
Typical procedure for the preparation of (Z)-N-(1-aryl-2-
(pyridin-2-yl)vinyl)anilines (3): (Z)-N-(1-phenyl-2-(pyridin-2-yl)
vinyl)aniline (3a)
A Carousel Tube Reactor (Radley Discovery Technology) con-
taining a stirring bar was charged with 2-(phenylethynyl)pyri-
dine 1a (89.6 mg, 0.5 mmol, 1.0 equiv.) dissolved in CH2Cl2
(1.5 mL) and (acetonitrile)[(2-biphenyl)di-tert-butylphosphine]
gold(I) hexafluoroantimonate (15.4 mg, 0.02 mmol, 0.04
equiv.). Then, aniline 2a was added (51 mg, 50 μl, 0.55 mmol,
8 S.-L. Shi and S. L. Buchwald, Nat. Chem., 2015, 7, 38.
9 (a) X. Zeng, G. D. Frey, S. Kousar and G. Bertrand, Chem. –
Eur. J., 2009, 15, 3056; (b) X. Zeng, G. D. Frey, R. Kinjo,
B. Donnadieu and G. Bertrand, J. Am. Chem. Soc., 2009,
131, 8690; (c) K. D. Hesp and M. Stradiotto, J. Am. Chem.
Soc., 2010, 132, 18026.
1.1 equiv.). The resultant solution was warmed at 80 °C and 10 For selected reviews and articles on the hydroamination of
stirred for 20 hours. After cooling, the volatile materials were
evaporated at reduced pressure and the residue was purified
by flash chromatography on neutral Al2O3 (Brockmann activity 1)
eluting with n-hexane (Rf = 0.21) to obtain 126.5 mg of (Z)-N-(1-
phenyl-2-(pyridin-2-yl)vinyl)aniline 3a (93% yield). Yellow
solid; mp: 83–85 °C; IR (KBr): 3357, 3050, 2923, 1626, 1587,
1374 cm−1; 1H NMR (400.13 MHz) (CDCl3): δ = 11.61 (br s 1 H),
8.40 (br d, J = 4.5 Hz, 1 H), 7.47 (td, J1 = 7.7 Hz, J2 = 1.6 Hz,
1 H), 7.43–7.40 (m, 2 H), 7.24–7.22 (m, 3 H), 7.01–6.97 (m, 3 H),
6.87–6.84 (m, 1 H), 6.73 (t, J = 7.2 Hz, 1 H), 6.61 (d, J = 7.7 Hz,
alkynes, see: (a) F. Pohlki and S. Doye, Chem. Soc. Rev.,
2003, 32, 104; (b) M. Beller, J. Seayad, A. Tillack and
H. Jiao, Angew. Chem., Int. Ed., 2004, 43, 3368; (c) S. Hong
and T. J. Marks, Acc. Chem. Res., 2004, 37, 673; (d) S. Doye,
Synlett, 2004, 1653; (e) R. A. Widenhoefer and X. Han,
Eur. J. Org. Chem., 2006, 4555; (f) R. Severin and S. Doye,
Chem. Soc. Rev., 2007, 36, 1407; (g) I. Aillaud, J. Collin,
J. Hannedouche and E. Schulz, Dalton Trans., 2007, 5105;
(h) T. E. Muller, K. C. Hultzsch, M. Yus, F. Foubelo and
M. Tada, Chem. Rev., 2008, 108, 3795; (i) L. Huang,
This journal is © The Royal Society of Chemistry 2019
Org. Biomol. Chem., 2019, 17, 527–532 | 531