Inorganic Chemistry
ARTICLE
the smaller system. Full geometry optimizations, i.e., without con-
straints, as well as frequency calculations on the stationary points thus
obtained were performed for all species on the hypersurface in the gas
phase as well as in the presence of a dielectric field as described by the
C-PCM model for selected structures.31 In this model, the species of
interest are embedded in a cavity of molecular shape surrounded by a
polarizable continuum whose field modifies the energy and physical
properties of the solute. The solvent reaction field is described by
polarization charges distributed on the cavity surface. This procedure is
known to reproduce experimental solvation energies quite well. We
chose the solvent DMSO used in the experimental investigations.
Because of the better PCM model implemented in Gaussian09,32 the
solvent corrections have been calculated using this newer version of that
program. The gas-phase reactions have been calculated with Gaussian03
only for historical reasons and are fully comparable to the Gaussian09
PCM calculations.
Weston, J.; Anders, E. ChemBioChem 2001, 2, 190. (e) Merz, K. M.;
Banci, L. J. Phys. Chem. 1996, 100, 17414. (f) Miscione, G.; Stenta, M.;
Spinelli, D.; Anders, E.; Bottoni, A. Theor. Chem. Acc. 2007, 118, 193.
(8) (a) Schenk, S.; Kesselmeier, J.; Anders, E. Chem.—Eur. J. 2004,
10, 3091. (b) Notni, J.; Schenk, S.; Protoschill-Krebs, G.; Kesselmeier, J.;
Anders, E. ChemBioChem 2007, 8, 530.
(9) (a) Jahn, B. O.; Eger, W. A.; Anders, E. J. Org. Chem. 2008,
73, 8265. (b) Jahn, B. O.; Eger, W. A.; Anders, E. Z. Naturforsch. 2010,
65b, 425.
(10) Eger, W. A.; Jahn, B. O.; Anders, E. J. Mol. Model. 2009, 15, 443.
(11) Notni, J.; Schenk, S.; Roth, A.; Plass, W.; G€orls, H.; Uhlemann,
U.; Walter, A.; Schmitt, M.; Popp, J.; Chatzipapadopoulos, S.; Emmler,
T.; Breitzke, H.; Leppert, J.; Buntkowsky, G.; Kempe, K.; Anders, E. Eur.
J. Inorg. Chem. 2006, 14, 2783.
(12) (a) von Wrochem, F.; Gao, D.; Scholz, F.; Nothofer, H.-G.;
Nelles, G.; Wessels, J. M. Nat. Nanotechnol. 2010, 5, 618. (b) Vickers,
M. S.; Cookson, J.; Beer, P. D.; Bishop, P. T.; Thiebaut, B. J. Mater. Chem.
2006, 16, 209. (c) Zhao, Y.; Pꢀerez-Segarra, W.; Shi, Q.; Wei, A. J. Am.
Chem. Soc. 2005, 127, 7328. (d) Schulz, P.; Zangmeister, C. D.; Zhao, Y.-
L.; Frail, P. R.; Saudari, S. R.; Gonzalez, C. A.; Kagan, C. R.; Wuttig, M.;
Zee, R. D. v. J. Phys. Chem. C 2010, 114, 20843.
For calculation of the Raman spectra, we used BP86/TZVP because
this combination turned out to give accurate molecular structures,
frequencies, and Raman intensities for medium-sized molecules.33
Furthermore, there is no need to scale the obtained wavenumbers of
the vibrational normal modes to adjust them to experimental values.22
(13) (a) Halls, D. J. Microchim. Acta 1969, 57, 62. (b) Malik, A. K.;
Faubel, W. Pestic. Sci. 1999, 55, 965.
(14) Schr€oder, D.; Schwarz, H.; Schenk, S.; Anders, E. Angew. Chem.
2003, 115, 5241.
’ ASSOCIATED CONTENT
(15) (a) Kimura, E.; Shiota, T.; Koike, T.; Shiro, M.; Kodama, M.
J. Am. Chem. Soc. 1990, 112, 5805. (b) Zhang, X.; van Eldik, R. Inorg.
Chem. 1995, 34, 5606. (c) Zhang, X.; van Eldik, R.; Koike, T.; Kimura, E.
Inorg. Chem. 1993, 32, 5749.
(16) Notni, J.; G€orls, H.; Anders, E. Eur. J. Inorg. Chem. 2006,
7, 1444.
(17) Notni, J.; G€unther, W.; Anders, E. Eur. J. Inorg. Chem. 2007,
7, 985.
(18) (a) Liang, J. Y.; Lipscomb, W. N. Biochemistry 1987, 26, 5293.
(b) Sola, M.; Lledos, A.; Duran, M.; Bertran, J. J. Am. Chem. Soc. 1992,
114, 869. (c) Tautermann, C. S.; Loferer, M. J.; Voegele, A. F.; Liedl,
K. R. J. Phys. Chem. B 2003, 107, 12013.
S
Supporting Information. Cartesian coordinates of all
b
stationary points as well as relative free energies not listed in
the paper, all total energies, and a detailed discussion of the
Raman spectra. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: ernst.anders@uni-jena.de.
(19) Lindskog, S.; Engberg, P.; Forsman, C.; Ibrahim, A. S.; Jonsson,
H. B.; Simonsson, I.; Tibell, L. Ann. N.Y. Acad. Sci. 1987, 429, 61.
(20) (a) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter,
J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO; University of
Wisconsin: Madison, WI, 2001. (b) Reed, A. E.; Curtiss, L. A.; Weinhold,
F. Chem. Rev. (Washington, DC, U.S.) 1988, 88, 899.
(21) (a) Presselt, M.; Schnedermann, C.; Schmitt, M.; Popp, J.
J. Phys. Chem. A 2009, 113, 3210. (b) Presselt, M.; Dietzek, B.; Schmitt,
M.; Rau, S.; Winter, A.; J€ager, M.; Schubert, U. S.; Popp, J. J. Phys. Chem.
A 2010, 114, 13163.
’ ACKNOWLEDGMENT
Financial support by the Deutsche Forschungsgemeinschaft,
Collaborative Research Center 436 Metal Mediated Reactions
modeled on Nature and the Fonds der Chemischen Industrie,
Germany, is gratefully acknowledged.
’ REFERENCES
(22) (a) Presselt, M.; Dietzek, B.; Schmitt, M.; Popp, J.; Winter, A.;
Chiper, M.; Friebe, C.; Schubert, U. S. J. Phys. Chem. C 2008, 112, 18651.
(b) Winter, A.; Friebe, C.; Chiper, M.; Schubert, U. S.; Presselt, M.;
Dietzek, B.; Schmitt, M.; Popp, J. ChemPhysChem 2009, 10, 787.
(23) (a) Joo, S.-W. Surf. Interface Anal. 2006, 38, 173. (b) Stephenson,
C. V.; Coburn, W. C.; Wilcox, W. S. Spectrochim. Acta 1961, 17, 933.
(24) Richman, J. E.; Atkins, T. J. J. Am. Chem. Soc. 1974, 96, 2268.
(25) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. J. A.; Vreven, T.; Kudin,
K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.;
Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,
(1) (a) Bertini, I.; Luchinat, C. Acc. Chem. Res. 1983, 16, 272. (b)
Christianson, D. W.; Fierke, C. A. Acc. Chem. Res. 1996, 29, 331. (c)
Coleman, J. E. J. Biol. Chem. 1967, 242, 5212. (d) Lindskog, S.
Pharmacol. Ther. 1997, 74, 1. (e) Lindskog, S.; Liljas, A. Curr. Opin.
Struct. Biol. 1993, 3, 915.(f) Silverman, D. N. In Enzyme Kinetics and
Mechanism Part D: Developments in Enzyme Dynamics; Purich, D. L., Ed.;
Academic Press: New York, 1995; Vol. 249, p 479. (g) Silverman, D. N.;
Lindskog, S. Acc. Chem. Res. 1988, 21, 30.
(2) Khalifah, R. G. J. Biol. Chem. 1971, 246, 2561.
(3) Pocker, Y.; Stone, J. T. J. Am. Chem. Soc. 1965, 87, 5497.
(4) (a) Sly, W. S.; Hu, P. Y. Annu. Rev. Biochem. 1995, 64, 375. (b)
Supuran, C. T.; Scozzafava, A.; Casini, A. Med. Res. Rev. 2003, 23, 146.
(5) Hewett-Emmett, D.; Tashian, R. E. Mol. Phylogenet. Evol. 1996,
5, 50.
(6) Jahn, B. O.; Eger, W. A.; Anders, E. In Biomimetics Learning from
Nature; Mukherjee, A., Ed.; INTECH: Vienna, Austria, 2010; p 167.
(7) (a) Bottoni, A.; Lanza, C. Z.; Miscione, G. P.; Spinelli, D. J. Am.
Chem. Soc. 2004, 126, 1542. (b) Br€auer, M.; Anders, E.; Sinnecker, S.;
Koch, W.; Rombach, M.; Brombacher, H.; Vahrenkamp, H. Chem.
Commun. 2000, 1, 647. (c) Br€auer, M.; Perez-Lustres, J. L.; Weston,
J.; Anders, E. Inorg. Chem. 2002, 41, 1454. (d) Mauksch, M.; Br€auer, M.;
3232
dx.doi.org/10.1021/ic101464j |Inorg. Chem. 2011, 50, 3223–3233