provides racemates and the product yields are not sufficient
(6-33% yields).5 They also demonstrated that a racemic C2-
symmetric spirobipyridine ligand can quantitatively coordi-
nate to [Cu(CH3CN)4]PF6, which represents the potential util-
ity of chiral spirobipyridine ligands for asymmetric catalysis.5
Our research group first demonstrated that cationic rhod-
ium(I)/modified-BINAP complexes can efficiently catalyze
both inter- and intramolecular [2 + 2 + 2] cycloaddition of
various unsaturated compounds with high chemo-, regio-,
and enantioselectivities.6,7 Recently, we have applied these
catalysts to [2 + 2 + 2] cycloaddition involving nitriles
leading to substituted pyridines,7h,8-13 and the work was
further extended to the axially chiral bipyridine synthesis
through double [2 + 2 + 2] cycloaddition.7f,14 In this
communication, we describe an enantioselective synthesis
of C2-symmetric spirobipyridine ligands through a cationic
rhodium(I)/modified-BINAP complex-catalyzed double [2 +
2 + 2] cycloaddition.
We have already reported that the reaction of substituted
malononitrile 1 with 1,6-diyne 2 in the presence of 5% [Rh-
(cod)2]BF4/(R)-BINAP selectively afforded the corresponding
enantioenriched monopyridine 3 having a quaternary ste-
reocenter without the formation of a bipyridine (Scheme 1).7h
Scheme 1
This successful enantioselective construction of a quater-
nary stereocenter prompted our investigation into a chiral
spirobipyridine synthesis. First, we applied the above-
mentioned catalyst to intermolecular double [2 + 2 + 2]
cycloaddition of bis-alkynenitrile 4 with monoalkyne 5, but
spirobipyridine 6 was not obtained at all and 4 was recovered
even at elevated temperature (Scheme 2).15
(5) Varela, J. A.; Castedo, L.; Saa`, C. Org. Lett. 1999, 1, 2141.
(6) For our first report on the cationic rhodium(I)/modified-BINAP-
catalyzed inter- and intramolecular [2 + 2 + 2] cycloadditions, see: Tanaka,
K.; Shirasaka, K. Org. Lett. 2003, 5, 4697.
(7) (a) Tanaka, K.; Toyoda, K.; Wada, A.; Shirasaka, K.; Hirano, M.
Chem.sEur. J. 2005, 11, 1145. (b) Tanaka, K.; Nishida, G.; Ogino, M.;
Hirano, M.; Noguchi, K. Org. Lett. 2005, 7, 3119. (c) Tanaka, K.; Wada,
A.; Noguchi, K. Org. Lett. 2005, 7, 4737. (d) Tanaka, K.; Wada, A.;
Noguchi, K. Org. Lett. 2006, 8, 907. (e) Tanaka, K.; Takeishi, K.; Noguchi,
K. J. Am. Chem. Soc. 2006, 128, 4586. (f) Nishida, G.; Suzuki, N.; Noguchi,
K.; Tanaka, K. Org. Lett. 2006, 8, 3489. (g) Tanaka, K.; Sagae, H.; Toyoda,
K.; Noguchi, K. Eur. J. Org. Chem. 2006, 3575. (h) Tanaka, K.; Suzuki,
N.; Nishida, G. Eur. J. Org. Chem. 2006, 3917. (i) Tanaka, K.; Sagae, H.;
Toyoda, K.; Noguchi, K.; Hirano, M. J. Am. Chem. Soc. 2007, 129, 1522.
(j) Tanaka, K.; Suda, T.; Noguchi, K.; Hirano, M. J. Org. Chem. 2007, 72,
2243. (k) Tanaka, K.; Nishida, G.; Wada, A.; Noguchi, K. Angew. Chem.,
Int. Ed. 2004, 43, 6510.
Scheme 2
(8) For recent reviews of pyridine synthesis by transition-metal-catalyzed
[2 + 2 + 2] cycloadditions, see: (a) Chopade, P. R.; Louie, J. AdV. Synth.
Catal. 2006, 348, 2307. (b) Nakamura, I.; Yamamoto, Y. Chem. ReV. 2004,
104, 2127. (c) Varela, J. A.; Saa`, C. Chem. ReV. 2003, 103, 3787.
(9) For pioneering work on the transition-metal-catalyzed [2 + 2 + 2]
cycloadditions of alkynes with nitriles, see: (a) Wakatsuki, Y.; Yamazaki,
H. J. Chem. Soc., Chem. Commun. 1973, 280. (b) Wakatsuki, Y.; Yamazaki,
H. J. Chem. Soc., Dalton Trans. 1978, 1278. (c) Bo¨nnemann, H.; Brinkmann,
R. Synthesis 1975, 600. (d) Bo¨nnemann, H. Angew. Chem., Int. Ed. Engl.
1978, 17, 505.
(10) For pioneering work on the Co-catalyzed [2 + 2 + 2] cycloadditions
of R,ω-diynes with nitriles and cyanoalkynes with monoalkynes, see: (a)
Naiman, A.; Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1977, 16,
708. (b) Brien, D. J.; Naiman, A.; Vollhardt, K. P. C. J. Chem. Soc., Chem.
Commun. 1982, 133. (c) Parnell, C. A.; Vollhardt, K. P. C. Tetrahedron
1985, 41, 5791.
Next, we attempted the intramolecular double [2 + 2 +
2] cycloaddition of bis-diynenitriles 9, which can be readily
prepared starting from known protected alkyne diol 716
(Scheme 3). Etherification of 7 followed by desilylation
Scheme 3
(11) Recent examples of pyridine synthesis through transition-metal-
catalyzed [2 + 2 + 2] cycloadditions: Co(I): (a) Fatland, A. W.; Eaton,
B. E. Org. Lett. 2000, 2, 3131. (b) Moretto, A. F.; Zhang, H.-C.; Maryanoff,
B. E. J. Am. Chem. Soc. 2001, 123, 3157. (c) Bonaga, L. V. R.; Zhang,
H.-C.; Maryanoff, B. E. Chem. Commun. 2004, 2394. (d) Bonaga, L. V.
R.; Zhang, H.-C.; Moretto, A. F.; Ye, H.; Gauthier, D. A.; Li, J.; Leo, G.
C.; Maryanoff, B. E. J. Am. Chem. Soc. 2005, 127, 3473. (e) Heller, B.;
Sundermann, B.; Buschmann, H.; Drexler, H.-J.; You, J.; Holzgrabe, U.;
Heller, E.; Oehme, G. J. Org. Chem. 2002, 67, 4414. (f) Gutnov, A.; Heller,
B.; Fischer, C.; Drexler, H.-J.; Spannenberg, A.; Sundermann, B.; Sunder-
mann, C. Angew. Chem., Int. Ed. 2004, 43, 3795. (g) Gutnov, A.; Abaev,
V.; Redkin, D.; Fischer, C.; Bonrath, W.; Heller, B. Synlett 2005, 1188.
(h) Groth, U.; Huhn, T.; Kesenheimer, C.; Kalogerakis, A. Synlett 2005,
1758. (i) Hrdina, R.; Stara`, I.; Dufkova`, L.; Mitchel, S.; Cisarova`, I.; Kotora,
M. Tetrahedron 2006, 62, 968. Ru(II): (j) Yamamoto, Y.; Okuda, S.; Itoh,
K. Chem. Commun. 2001, 1102. (k) Yamamoto, Y.; Ogawa, R.; Itoh, K. J.
Am. Chem. Soc. 2001, 123, 6189. (l) Varela, J. A.; Castedo, L.; Saa`, C. J.
Org. Chem. 2003, 68, 8595. (m) Yamamoto, Y.; Kinpara, K.; Nishiyama,
H.; Itoh, K. AdV. Synth. Catal. 2005, 347, 1913. (n) Yamamoto, Y.; Kinpara,
K.; Ogawa, R.; Nishiyama, H.; Itoh, K. Chem.sEur. J. 2006, 12, 5618.
Ni(0): (o) McCormick, M. M.; Duong, H. A.; Zuo, G.; Louie, J. J. Am.
Chem. Soc. 2005, 127, 5030. (p) Takevec, T. N.; Zuo, G.; Simon, K.; Louie,
J. J. Org. Chem. 2006, 71, 5834.
furnished diyne monool 8. Dialkylation of malononitrile with
the corresponding tosylate of 8 furnished bis-diynenitrile 9a,
possessing a phenyl at each alkyne terminus, in high yield.
1296
Org. Lett., Vol. 9, No. 7, 2007