would be energetically disfavored, the HAT reaction could
alternatively take place at C-1′ through a seven-membered
transition state. This last reaction should give an interesting
spiro ortho ester (such as 12, Scheme 3), which is a sub-
structure present in several antibiotics of the orthosomycin5
and erythromycin6 families and consequently has attracted
considerable attention from synthetic organic chemists.7
This may be the case of the fifth-lowest-energy structural
arrangement E which is approximately 3 kcal/mol more
energetic than the arrangement of D-maltose A and where
the 1,3,5-trioxocane ring adopts a theoretically less-stable
boat-boat conformation (Table 1).
Scheme 1. HAT Reaction of D-Maltose
To address these issues, we decided to prepare disaccha-
rides R-L-Rhamp-(1f4)-R-D-Galp 3 and R-L-Rhamp-(1f4)-
R-D-Glcp 11 which, after HAT, could hypothetically lead to
structural arrangements C and E, respectively. The selection
of 3 was also made considering that arrangement C belongs
to a pseudoenantiomeric pair different from that of D-maltose
and slightly more energetic.
disaccharides or whether it is exclusive to D-maltose. As can
be easily determined by molecular mechanics calculations,
the 1,3,5-trioxocane ring in 2 adopts a constrained, stable,
boat-chair conformation.3 We therefore analyzed the con-
formation of the ring for all 16 possible disaccharide
diastereoisomers of the four chiral centers involved in the
cyclization step (C-5′, C-1′, C-4, and C-5).4 Only four
structural arrangements (A-D) were found that can easily
accommodate 1,3,5-trioxocane rings in stable boat-chair
conformations of similar minimized energies (∆E e 1.5 kcal/
mol), as depicted in Table 1. Among the four structures, two
Compounds 3 and 11 were effectively synthesized by
TMSOTf-mediated glycosylation of suitably protected
D-
galactopyranose and D-glucopyranose derivatives, respec-
tively, using 2,3,4-tri-O-acetyl-R-L-rhamnopyranosyl trichlo-
roacetimidate as the glycosyl donor, as described in the
Supporting Information.8
The alkoxyl radicals were generated by oxidation of the
primary alcohol with (diacetoxyiodo)benzene in the presence
(3) To the best of our knowledge, studies on the conformation of the
1,3,5-trioxocane ring are scarce: (a) McCullough, K. J.; Masuyama, A.;
Morgan, K. M.; Nojima, M.; Okada, Y.; Satake, S.; Takeda, S.-y. J. Chem.
Soc., Perkin Trans. 1 1998, 2353-2362. For the conformation of a related
1,3,6-trioxocane derivative, see: (b) Buchanan, G. W.; Driega, A. B.; Laister,
R. C.; Bourque, K. Magn. Reson. Chem. 1999, 37, 401-406. See also: (c)
Anet, F. A. L. In Conformational Analysis of Medium-Sized Heterocycles;
Glass, R. S., Ed.; VCH: New York, 1988; pp 35-95. (d) McGuire, R. R.;
Pflug, J. L.; Rakowsky, M. H.; Shackelford, S. A.; Shaffer, A. A.
Heterocycles 1994, 38, 1979-2004. (e) Burkert, U. Z. Naturforsch 1980,
35b, 1479-1481.
Table 1. Conformations of 1,3,5-Trioxocane Rings
(4) Molecular mechanics calculations were carried out by using CS
Chem3D, version 10.0. For the purpose of simplification, substituents at
C-2, C-3, C-2′, C-3′, and C-4′ in the carbohydrate skeleton were not
considered in the calculation.
(5) (a) Ganguly, A. K. Oligosaccharide Antibiotics. In Topics in Antibiotic
Chemistry; Sammes, P. G., Ed.; Ellis Horwood: Chichester, 1978; Vol. 2,
Part B, p 49. (b) Wright, D. E. Tetrahedron 1979, 35, 1207-1237. (c) Ollis,
W. D.; Smith, C.; Wright, D. E. Tetrahedron 1979, 35, 105-127.
(6) (a) Martin, J. R.; Egan, R. S.; Goldstein, A. W.; Collum, P.
Tetrahedron 1975, 31, 1985-1989. (b) Mikami, Y.; Yazawa, K.; Nemoto,
A.; Komaki, H.; Tanaka, Y.; Grafe, U. J. Antibiot. 1999, 52, 201-202.
(7) (a) Ohtake, H.; Ichiba, N.; Ikegami, S. J. Org. Chem. 2000, 65, 8164-
8170. (b) Ohtake, H.; Ichiba, N.; Ikegami, S. J. Org. Chem. 2000, 65, 8171-
8179. (c) Ohtake, H.; Ikegami, S. Org. Lett. 2000, 2, 457-460. (d) Nicolaou,
K. C.; Mitchell, H. J.; Fylaktakidou, K. C.; Suzuki, H.; Rodr´ıguez, R. M.
Angew. Chem., Int. Ed. 2000, 39, 1089-1093. (e) Nicolaou, K. C.;
Fylaktakidou, K. C.; Mitchell, H. J.; van Delft, F. L.; Rodr´ıguez, R. M.;
Conley, S. R.; Jin, Z. Chem.-Eur. J. 2000, 6, 3166-3185. (f) Trumtel,
M.; Tavecchia, P.; Veyrieres, A.; Sinay¨, P. Carbohydr. Res. 1990, 202,
257-275. (g) Tamura, J.; Horito, S.; Hashimoto, H.; Yoshimura, J.
Carbohydr. Res. 1988, 174, 181-199. (h) Beau, J.-M.; Jaurand, G.; Esnault,
J.; Sinay¨, P. Tetrahedron Lett. 1987, 28, 1105-1108. (i) Yoshimura, J.;
Horito, S.; Tamura, J.; Hashimoto, H. Chem. Lett. 1985, 1335-1338. (j)
Asano, K.; Horito, S.; Saito, A.; Yoshimura, J. Carbohydr. Res. 1985, 136,
1-11. (k) Asano, K.; Horito, S.; Yoshimura, J.; Nakazawa, T.; Ohya, Z.-
I.; Watanabe, T. Carbohydr. Res. 1985, 138, 325-328.
arrangement C-5′ C-1′ C-4 C-5 conformation ∆Ea
Ab
B
C
D
E
S
R
R
S
R
S
R
R
S
R
S
R
R
S
S
R
S
R
S
R
boat-chair
boat-chair
boat-chair
boat-chair
boat-boat
0
0.3
1.1
1.5
3.3
a
b
In kcal/mol. D-Maltose arrangement.
(8) (a) Schmidt, R. R.; Jung, K.-H. In PreparatiVe Carbohydrate
Chemistry; Hanessian, S., Ed.; Marcel Dekker: New York, 1997; pp 283-
312. For the use of 2,3,4-tri-O-acetyl-R-L-rhamnopyranosyl trichloroace-
timidate as a glycosyl donor, see: (b) Wang, J.; Li, J.; Tuttle, D.; Takemoto,
J. Y.; Chang, C.-W. T. Org. Lett. 2002, 4, 3997-4000. (c) Gurjar, M. K.;
Mainkar, A. S. Tetrahedron 1992, 48, 6729-6738.
pairs of pseudoenantiomers, A and B and C and D, with
very similar energies (∆∆E e 0.4 kcal/mol) can be identified.
Another question that now arises is whether, in those
compounds where the formation of the 1,3,5-trioxocane ring
1786
Org. Lett., Vol. 9, No. 9, 2007