Communications
[9] C. Jennings-White, R. G. Almquist, Tetrahedron Lett. 1982, 23,
2533.
[10] a) K. E. Murphy, A. H. Hoveyda, Org. Lett. 2005, 7, 1255; b) B.
Breit, D. Breuninger, Synthesis 2005, 147.
[11] S. Tominaga, Y. Oi, T. Kato, D. K. An, S. Okamoto, Tetrahedron
Lett. 2004, 45, 5585.
[12] A. Alexakis, C. L. Winn, F. Guillen, J. Pytkowicz, S. Roland, P.
Mangeney, Adv. Synth. Catal. 2003, 345, 345.
[13] U. Piarulli, P. Daubos, C. Claverie, M. Roux, C. Gennari, Angew.
Chem. 2003, 115, 244; Angew. Chem. Int. Ed. 2003, 42, 234.
[14] a) A. Alexakis, S. Rosset, J. Allamand, S. March, F. Guillen, C.
Benhaim, Synlett 2001, 1375; b) A. Alexakis, D. Polet, S. Rosset,
S. March, J. Org. Chem. 2004, 69, 5660.
In conclusion, we have succeeded in demonstrating the
value of this allylic substitution methodology by forming
highly tunable chiral synthons, starting from commercially
available difunctionalized substrates, trans-1,4-bishalo-2-
butenes. Both the dichloro and dibromo allylic substrates
gave good enantioselectivities and excellent regioselectivities.
Values for the enantiomeric excess of 85% and 94%,
respectively for dichloro and dibromo substrates were
obtained as exclusive g adducts in both cases.
Received: December 7, 2006
Published online: March 9, 2007
[15] B. L. Feringa, M. Pineschi, L. A. Arnold, R. Imbos, A. H. M.
De Vries, Angew. Chem. 1997, 109, 2733; Angew. Chem. Int. Ed.
Engl. 1997, 36, 2620.
[16] The enantioselectivity and the geometry of the olefin were
followed during the addition of the organomagnesium reagent to
the cis-2 substrate, and no isomerization was observed during the
course of the reaction.
[17] F. López, A. W. Van Zijl, A. J. Minnaard, B. L. Feringa, Chem.
Commun. 2006, 409.
[18] The absolute stereochemistry was determined by the optical
rotation of the known alcohol, (S)-2-methyl-4-phenylbutan-1-ol.
Keywords: alkylation · allylic compounds · asymmetric catalysis ·
copper· nucleophilic substitution
.
[1] a) B. M. Trost, C. Lee in Catalytic Asymmetric Synthesis (Ed.: I.
Ojima), 2nd ed., Wiley, New York, 2000, p. 593; b) A. Pfaltz, M.
Lautens in Comprehensive Asymmetric Catalysis I–III (Ed.:
E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin, 1999,
p. 833.
[2] For reviews of AAA reactions with various metals, see: a) H.
Miyabe, Y. Takemoto, Synlett 2005, 1641; b) B. M. Trost, J. Org.
Chem. 2004, 69, 5813; c) B. M. Trost, M. L. Crawley, Chem. Rev.
2003, 103, 2921; d) R. Takeuchi, Synlett 2002, 1954.
[3] a) F. Dübner, P. Knochel, Angew. Chem. 1999, 111, 391; Angew.
Chem. Int. Ed. 1999, 38, 379; b) F. Dübner, P. Knochel,
Tetrahedron Lett. 2000, 41, 9233.
[4] a) M. Van Klaveren, E. S. M. Persson, A. del Villar, D. M.
Grove, J. E. Bäckvall, G. van Koten, Tetrahedron Lett. 1995,
36, 3059; b) A. S. E. Karlstrom, F. F. Huerta, G. J. Meuzelaar,
J. E. Bäckvall, Synlett 2001, 923.
[5] For recent reviews of Cu-catalyzed AAA reactions, see: a) A.
Alexakis, C. Malan, L. Lea, K. Tissot-Croset, D. Polet, C.
Falciola, Chimia 2006, 60, 124; b) H. Yorimitsu, K. Oshima,
Angew. Chem. 2005, 117, 4509; Angew. Chem. Int. Ed. 2005,
44,4435; c) A. Kar, N. P. Argade, Synthesis 2005, 2995.
[6] a) K. Tissot-Croset, A. Alexakis, Tetrahedron Lett. 2004, 45,
7375; b) K. Tissot-Croset, D. Polet, S. Gille, C. Hawner, A.
Alexakis, Synthesis 2004, 2586; c) K. Tissot-Croset, D. Polet, A.
Alexakis, Angew. Chem. 2004, 116, 2480; Angew. Chem. Int. Ed.
2004, 43, 2426; d) A. Alexakis, K. Croset, Org. Lett. 2002, 4,
4147; e) A. Alexakis, C. Malan, L. Lea, C. Benhaim, X.
Fournioux, Synlett 2001, 927.
[7] C. A. Falciola, K. Tissot-Croset, A. Alexakis, Angew. Chem.
2006, 118, 6141; Angew. Chem. Int. Ed. 2006, 45, 5995.
[8] a) M. J. Dunn, R. F. W. Jackson, J. Pietruszka, D. Turner, J. Org.
Chem. 1995, 60, 2210 – 2215; b) M. Yus, J. Gomis, Eur. J. Org.
Chem. 2003, 2043; c) R. Ortiz, M. Yus, Tetrahedron 2005, 61,
1699.
(Lit. [a]2D0 = À20 (c = 5.0, CHCl3) for 91% ee, R. W. Hoffmann
et al., Synthesis 2002, 207).
[19] The ligand L5, which was found to be best for the previous
substrate, afforded ee values < 40% in this case.
[20] a) A. O. Larsen, W. Leu, C. N. Oberhuber, J. E. Campbell, A. H.
Hoveyda, J. Am. Chem. Soc. 2004, 126, 11130; b) M. A.
Kacprzynski, A. H. Hoveyda, J. Am. Chem. Soc. 2004, 126,
10676.
[21] K. Tissot-Croset, PhD Thesis Dissertation, No. 3634, 2005,
Geneva (Switzerland).
[22] S. E. Denmark, L. K. Marble, J. Org. Chem. 1990, 55, 1984.
[23] W. F. Bailey, E. R. Punzalan, J. Org. Chem. 1990, 55, 5404; E.
Negishi, D. R. Swanson, C. J. Rousset, J. Org. Chem. 1990, 55,
5406.
[24] Chiral homoallylic chlorides also underwent transformations
with retention of ee value, either through Grignard reaction or
through prior formation of the iodide, although they were less
reactive.
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 2619 –2622