4 E.g. (a) H. Achenbach, J. Gross, X. A. Dominguez, G. Cano, J. V. Star,
L. D. C. Brussolo, G. Mun˜oz, F. Salgado and L. Lo´pez,
Phytochemistry, 1987, 26, 1159–1166; (b) X. A. Dominiguez,
C. Rombold, J. V. Star, H. Achenbach and J. Gross, Phytochemistry,
1987, 26, 1821–1823; (c) A. Arnone, V. Di Modugno, G. Nasini and
I. Venturini, Gazz. Chim. Ital., 1988, 118, 675–682; (d) H. Achenbach,
W. Utz and X. A. Dominguez, Phytochemistry, 1993, 34, 835–837; (e)
A. M. Rimando, J. M. Pezzuto, N. R. Farnsworth, T. Santisuk and
V. Reutrakul, Nat. Prod. Lett., 1994, 4, 267–272; (f) C. B. Bernard,
H. G. Krishnamurty, D. Chauret, T. Durst, B. J. R. Philoge`ne,
P. Sa´nchez-Vindas, C. Hasbun, L. Poveda, L. San Roman and
J. T. Arnason, J. Chem. Ecol., 1995, 21, 801–814; (g) D. C. Chauret,
C. B. Bernard, J. T. Arnason and T. Durst, J. Nat. Prod., 1996, 59,
152–155; (h) H. Achenbach, W. Utz, B. Lozano, E. M. G. Touche´ and
S. Moreno, Phytochemistry, 1996, 43, 1093–1095; (i) Nguyen
Hoang Anh, H. Ripperger, Tran Van Sung and G. Adam,
Phytochemistry, 1996, 42, 1167–1169; (j) Nguyen Hoang Anh,
H. Ripperger, A. Porzel, Tran Van Sung and G. Adam,
Phytochemistry, 1997, 46, 569–571; (k) P. J. C. Benevides, P. Sartorelli
and M. J. Kato, Phytochemistry, 1999, 52, 339–343; (l) S. A. S. Silva,
J. C. M. De Castro, T. G. Da Silva, E. V. L. Da-Cunha, J. M. Barbosa-
Filho and M. S. Da Silva, Nat. Prod. Lett., 2001, 15, 323–329.
12 (a) Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune and
K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765–5780; (b) We used
(2)-diisopropyl tartrate and checked that the material so-labeled was
indeed levorotatory.
13 See also: (a) ref. 14, page 19; (b) M. G. Finn and K. B. Sharpless, in
Asymmetric Synthesis, ed. J. D. Morrison, Academic Press, Orlando,
1985, vol. 5, pp 247–308, especially pp 287–288.
14 T. Katsuki and V. S. Martin, Org. React., 1996, 48, 1–299.
15 We can find only one example of Sharpless epoxidation of a styrene
derivative with a para-oxygen substituent (and no additional substi-
tuents) on the benzene ring, but it is a kinetic and not a preparative
experiment: S. S. Woodard, M. G. Finn and K. B. Sharpless, J. Am.
Chem. Soc., 1991, 113, 106–113.
16 Determined by chiral HPLC: Chiralcel OD column (0.46 6 15.0 cm);
90 : 10 heptane–isopropanol; flow rate 0.6 mL min21; 40 uC; detection at
210 nm.
17 P. C.-M. Mao, J.-F. Mouscadet, H. Leh, C. Auclair and L.-Y. Hsu,
Chem. Pharm. Bull., 2002, 50, 1634–1637.
18 Determined by chiral HPLC: Chiralpak AD-RH (150 6 4.6 mm), 1 : 1
MeCN-water, flow 0.5 mL min21, detection at 232 nm. Baseline
separation of a racemic sample; retention times 11.9 min and 14.3 min.
19 Y. M. Choi-Sledeski, D. G. McGarry, D. M. Green, H. J. Mason,
M. R. Becker, R. S. Davis, W. R. Ewing, W. P. Dankulich,
V. E. Manetta, R. L. Morris, A. P. Spada, D. L. Cheney,
K. D. Brown, D. J. Colussi, V. Chu, C. L. Heran, R. S. Morgan,
R. G. Bentley, R. J. Leadley, S. Maignan, J.-P. Guiloteau,
C. T. Dunwiddie and H. W. Pauls, J. Med. Chem., 1999, 42,
3572–3587.
20 Opening of related epoxides with phenols did not work in non-aqueous
solvents, and diastereoselection in acidic organic solvents was poor; no
epoxide opening occurred in basic organic media.
21 Cf H. Tanaka, I. Kato and K. Ito, Chem. Pharm. Bull., 1987, 35,
3603–3608.
22 J. Yu, M. J. Gaunt and J. B. Spencer, J. Org. Chem., 2002, 67,
4627–4629.
23 The 1H and 13C NMR data for our sample matched the values reported
in ref. 4g, 4l and 4c extremely closely, but showed some differences from
the values reported in ref. 4a.
24 For a related, and sensitive, para-alkoxy allylic carbonate, see
compound (R)-6 in: P. A. Evans and D. K. Leahy, J. Am. Chem.
Soc., 2003, 125, 8974–8975.
25 T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102,
5974–5976.
26 Normally, Zn would be required to react with the intermediate iodo
epoxide formed from the mesylate. Direct conversion of an iodo epoxide
to an allylic alcohol by iodide ion has been suggested in a mechanistic
scheme: J. Barluenga, J. L. Fernandez-Simon, J. M. Concellion and
M. Yus, J. Chem. Soc., Perkin Trans. 1, 1989, 77–80.
27 A. P. Kozokowski, W. Tu¨ckmantel and C. George, J. Org. Chem., 2000,
65, 5371–5381.
28 Optical rotation: A. Kamal, M. Sandbhor and K. V. Ramana,
Tetrahedron: Asymmetry, 2002, 13, 815–820.
29 Levorotatory material corresponds to an S configuration: R. MacLeod,
F. J. Welch and H. S. Mosher, J. Am. Chem. Soc., 1960, 82, 876–880.
30 H. Achenbach, W. Utz, A. Usubillaga and H. A. Rodriguez,
Phytochemistry, 1991, 30, 3753–3757.
5 Levorotatory conocarpan: (a) B. Freixa, R. Vila, E. A. Ferro, T. Adzet
and S. Can˜igueral, Planta Med., 2001, 67, 873–875; (b) M. R. G. Vega,
M. G. de Carvalho, J. R. Velandia and R. Braz-Filho, Rev. Latinoam.
Quim., 2001, 29, 63–72.
6 Conocarpan isolated from the leaves of Piper regnelli (ref. 2); the roots
of Krameria cystisoides (ref. 4a), Krameria tomentosa (ref. 4l) and
Krameria triandra (ref. 4c); and the stems of Anorgeissus acuminata
(ref. 4e) is reported to be dextrorotatory; our own synthetic material, of
proven absolute configuration 1, is levorotatory and the CD curve of its
acetate has negative De at 260 nm. The acetate of conocarpan isolated
from timber (ref. 3) is reported to have positive De at 260 nm and so the
parent conocarpan must be dextrorotatory. Consequently all these plant
sources afford material of the same absolute configuration. With the
following exception, other references to conocarpan that we have
examined do not give the specific rotation. Conocarpan isolated from
the leaves of Piper fulvescens C. DC (ref. 5) is reported to have [a]21
=
D
2108.26.
7 R. P. Tripathi, R. C. Mishra, N. Dwivedi, N. Tewari and S. S. Verma,
Curr. Med. Chem., 2005, 12, 2643–2659 and references therein.
8 (a) Antitrypanosomal activity: P. S. Luize, T. Ueda-Nakamura,
B. P. D. Filho, D. A. G. Cortez and C. V. Nakamura, Biol. Pharm.
Bull., 2006, 29, 2126–2130; (b) antibacterial activity: G. L. Pessini,
B. P. D. Filho, C. V. Nakamura and D. A. G. Cortez, Mem. Inst.
Oswaldo Cruz, 2003, 98, 1115–1120; (c) photoprotective activity:
M. Carini, G. Aldini, M. Orioli and R. M. Facino, Planta Med.,
2002, 68, 193–197; (d) antifungal activity: M. P. De Campos, C. V. Filho,
R. Z. Da Silva, R. A. Yunes, S. Zacchino, S. Juarez, R. C. Bella Cruz
and A. Bella Cruz, Biol. Pharm. Bull., 2005, 28, 1527–1530; (e)
G. L. Pessini, B. P. D. Philo, C. V. Nakamura and D. A. G. Cortez,
J. Braz. Chem. Soc., 2005, 16, 1130–1133.
9 T. Kurta´n, E. Baitz-Ga´cs, Z. Majer and S. Antus, J. Chem. Soc., Perkin
Trans. 1, 2000, 453–461.
10 B. B. Snider, L. Han and C. Xie, J. Org. Chem., 1997, 62, 6978–6984.
11 When we tried the standard catalytic epoxidation (ref. 12) we observed
very little, if any, reaction with 2 (R = Me or t-BuMe2Si).
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 2151–2153 | 2153