Pure Appl. Chem., 2003, 75, 39–46; (g) D. Morton and R. A. Stockman,
Tetrahedron, 2006, 62, 8869–8905.
Crystallography
8 Inverse gated 13C NMR is a technique that allows quantitation of
carbon atoms by using longer relaxation times and removal of any
NOE enhancements. For more information see: T. D. W. Claridge, in
High-Resolution NMR Techniques in Organic Chemistry, Pergamon,
Oxford, 1999, ch. 4, pp. 111–146.
Compound 12d was crystallized from mixture of diethyl ether and
light petroleum at room temperature as parallelepiped blocks.‡
A crystal of approximately 0.6 × 0.35 × 0.15 mm was cut from
a larger one and analyzed on the Kappa CCD at 293 K using
MoKa1 radiation. The full sphere was collected up to h = 27.5◦.
The data collection and processing were done using the Scalepack
software.13,14 The structure was solved by the direct method and
refined using the SHELX97 package.15 All of the non-H atoms
were refined anisotropically while all H atoms were found on the
Fourier Difference map and refined isotropically. The absolute
configuration of the molecule was deducted knowing the absolute
configurations of the four stereocentres at C2, C3, C4 and C5 as
occurring in D-glucose, and the Flack parameters.16
9 C. F. Brewer, E. J. Hehre, J. Lehmann and W. Weiser, Liebigs Ann.
Chem., 1984, 1078–1087.
10 Ortep representation of the X-ray structure of compound 12d. Thermal
ellipsoids are set for 35%..
Acknowledgements
This work was financially supported by Leiden University. We
thank Hans van der Elst and Nico Meeuwenoord for their
technical assistance. Kees Erkelens and Fons Lefeber are gratefully
acknowledged for their assistance with the NMR experiments.
References
1 M. Raunkjaer, M. F. El Oualid, G. A. von der Marel, H. S. Overkleeft
and M. Overhand, Org. Lett., 2004, 6, 3167–3170.
2 E. Graf von Roedern and H. Kessler, Angew. Chem., Int. Ed. Engl.,
1994, 33, 687–689.
3 For related compounds see: (a) T. K. Chakraborty and G. Sudhakar,
Tetrahedron Lett., 2005, 46, 4287–4290; (b) T. K. Chakraborty and
G. Sudhakar, Tetrahedron: Asymmetry, 2005, 16, 7–9; (c) S. Schro¨der,
A. K. Schrey, A. Knoll, P. Reiss, B. Ziemer and U. Koert, Eur. J. Org.
Chem., 2006, 2766–2776; (d) J. E. Campbell, E. E. Englund and S. D.
Burke, Org. Lett., 2002, 4, 2273–2275.
4 For general reviews on SAAs see: (a) S. A. W. Gruner, E. Lorcardi,
E. Lohof and H. Kessler, Chem. Rev., 2002, 102, 491–514; (b) T. K.
Chakraborty, S. Ghosh and S. Jayaprakash, Curr. Med. Chem., 2002,
9, 421–435; (c) F. Schweizer, Angew. Chem., Int. Ed., 2002, 41, 230–
253; (d) T. K. Chakraborty, P. Srinivasu, S. Tapadar and B. K. Mohan,
J. Chem. Sci., 2004, 116, 187–207; (e) T. K. Chakraborty, P. Srinivasu,
S. Tapadar and B. K. Mohan, Glycoconjugate J., 2005, 22, 83–93.
5 For some examples of sugar amino acids possessing a primary amine
functionality see: (a) S. F. Jenkinson, T. Harris and G. W. J. Fleet,
Tetrahedron: Asymmetry, 2004, 15, 2667–2679; (b) T. K. Chakraborty,
S. Ghosh, S. Jayaprakash, J. A. R. P. Sharma, V. Ravikanth, P. V.
Diwan, R. Nagaraj and A. C. Kunwar, J. Org. Chem., 2000, 65, 6441–
6457; (c) H. S. Overkleeft, S. H. L. Verhelst, E. Pieterman, N. J.
Meeuwenoord, M. Overhand, L. H. Cohen, G. A. von der Marel and
J. H. van Boom, Tetrahedron Lett., 1999, 40, 4103–4106; (d) F. Perl, L.
Cipolla, B. La Feria and F. Nicotra, Chem. Commun., 2000, 2303–2304.
6 (a) W. R. Kobertz, C. R. Bertozzi and M. D. Bednarski, Tetrahedron
Lett., 1992, 33, 737–740; (b) A. Dondoni and M.-C. Scherrmann, J. Org.
Chem., 1994, 59, 6404–6412; (c) M. E. Sa´nchez, V. Michelet, I. Besnier
and J. P. Geneˆt, Synlett, 1994, 705–708; (d) F. Labeguere, J. P. Lavergne
and J. Martinez, Tetrahedron Lett., 2002, 43, 7271–7272; (e) A. Dondoni
and A. Marra, Tetrahedron Lett., 2003, 44, 13–16.
11 T. Mukaiyama, I. Shiina, H. Iwadare, M. Saitoh, T. Nishimura, N.
Ohkawa, H. Sakoh, K. Nishimura, Y. Tani, M. Hasegawa, K. Yamada
and K. Saitoh, Chem.–Eur. J., 1999, 5, 121–161.
12 R. R. Schmidt and H. Dietrich, Angew. Chem., Int. Ed. Engl., 1991, 30,
1328–1329.
13 S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart and K. Shankland,
maXus, Bruker Nonius, The Netherlands, MacScience, Japan & The
University of Glasgow, 1999.
7 For the application of enantiopure tert-butanesulfinamides in the
generation of chiral secondary amines see: (a) G. C. Liu, D. A. Cogan
and J. A. Ellman, J. Am. Chem. Soc., 1997, 119, 9913–9914; (b) A. Lee
and J. A. Ellman, Org. Lett., 2001, 3, 3707–3709; (c) T. P. Tang and
J. A. Ellman, J. Org. Chem., 2002, 67, 7819–7832; (d) T. P. Tang, S. K.
Volkman and J. A. Ellman, J. Org. Chem., 2001, 66, 8772–8778; (e) D. J.
Weix and J. A. Ellman, Org. Lett., 2003, 5, 1317–1320; (f) J. A. Ellman,
14 Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276, 307–
326.
15 (a) G. M. Sheldrick, SHELXS-97: Program for Crystal Structure
Solution, University of Go¨ttingen, Germany, 1997; (b) G. M. Sheldrick,
SHELXL97: Program for the Refinement of Crystal Structures,
University of Go¨ttingen, Germany, 1997.
‡ CCDC reference number 644038. For crystallographic data in CIF or
other electronic format see DOI: 10.1039/b705750d
16 H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876–881.
2314 | Org. Biomol. Chem., 2007, 5, 2311–2314
This journal is
The Royal Society of Chemistry 2007
©