H. Xia et al. / Tetrahedron 64 (2008) 5736–5742
5741
was poured into water and extracted with CH2Cl2 (3ꢂ50 mL). The
combined organic extracts were washed with brine, dried (Mg2SO4),
and concentrated to dryness under vacuum. The crude product was
purified by flash column chromatography (petroleum ether/
CH2Cl2¼4:1) to give 1.36 g (67%) of product 5 as a yellow solid.
ether/CH2Cl2¼4:1) to give 0.149 g (24%) of product Tr-TPA9 as
a yellow solid.
1H NMR (500 MHz, CDCl3)
d
8.36 (d, J¼7.0 Hz, 3H, Ar), 7.58 (d,
J¼9.0 Hz, 6H, Ar), 7.49 (d, J¼8.0 Hz, 6H, Ar), 7.37–7.42 (m, 24H, Ar),
7.25–7.28 (m, 24H, Ar), 7.20 (d, J¼8.0 Hz, 6H, Ar), 7.11–7.15 (m, 39H,
Ar), 6.98–7.06 (m, 39H, Ar), 2.99 (br, 3H, CH2), 2.14 (m, 3H, CH2),
0.88–0.93 (m, 12H, CH2), 0.58–0.64 (m, 12H, CH2), 0.47 (t, J¼7.0 Hz,
18H, CH3). 13C NMR (75 MHz, CDCl3) 13.87, 22.90, 26.57, 29.69,
55.54, 122.96, 123.67, 124.13, 124.42, 126.44, 126.90, 127.17, 127.32,
127.66, 129.26, 131.77, 132.49, 135.70, 138.20, 139.85, 145.10, 146.42,
147.12, 147.58, 154.18. MALDI/TOFMS: calcd for C231H209N9: 3100.6,
found: 3101.4. Anal. Calcd for C231H209N9: C, 89.41; H, 6.53; N, 4.06.
Found: C, 89.24; H, 6.72; N, 3.94.
1H NMR (500 MHz, CDCl3)
d 7.31–7.39 (m, 12H, Ar), 7.10–7.27 (m,
12H, Ar), 7.01–7.09 (m, 20H, Ar), 6.65–6.71 (m, 1H, CH), 6.70 (d,
J¼17.5 Hz, 1H, CH]CH2), 5.18(d, J¼11.0 Hz, 1H, CH]CH2). MALDI/
TOFMS: calcd for C60H47N3: 809.4, found: 811.4. Anal. Calcd
for C60H47N3: C, 88.96; H, 5.85; N, 5.19. Found: C, 88.85; H, 6.01; N,
5.07.
4.6. Compound 7
A mixture of compound 6 (2.00 g, 2.96 mmol) and 10 mL of
solvent mixture (CH3COOH/H2SO4/H2O¼100:40:3) was heated to
60 ꢀC with vigorous stirring, followed by addition of 3 mL of CHCl3,
H5IO6 (0.58 g, 2.45 mmol), and I2 (1.25 g, 4.93 mmol). The mixture
was stirred at 80 ꢀC under nitrogen atmosphere for 3 days. The
mixture was cooled to room temperature, and 100 mL of water was
added. The brown precipitate was filtered and purified by
recrystallization three times from ethanol to afford 7 (1.93 g, 61.8%)
as a white solid.
Acknowledgements
This work was supported by the State Key Development
Program for Basic Research of China (Grant No. 2002CB613401), the
National Natural Science Foundation of China (Grant No.
50673035), the Program for Changjiang Scholars and Innovative
Research Team in University (Grant No. IRT0422), Program for
New Century Excellent Talents in Universities of China Ministry
of Education, and the Science Fund of State Key Laboratory of
Polymer Physics and Chemistry (Changchun Institute of Applied
Chemistry).
1H NMR (500 MHz, CDCl3)
d
7.92–8.14 (3H, d, J¼12 Hz), 7.72–
7.80 (3H, s), 7.64–7.72 (3H, d, J¼12 Hz), 2.72–2.98 (6H, m), 1.88–2.16
(6H, m), 0.76–1.08 (36H, m), 0.59–0.76 (18H, t, J¼9.0 Hz), 0.29–0.58
(12H, m).
Supplementary data
4.7. Compound Tr-TPA3
Supplementary data associated with this article can be found in
A round-bottomed flask (25 mL) was oven dried and cooled
under N2 atmosphere. Compound 7 (0.21 g, 0.2 mmol), compound
3 (0.27 g, 1 mmol), K3PO4 (0.21 g, 1 mmol), and 0.5 mg Pd(OAc)2
were dissolved in dry DMAc (10 mL). The reaction mixture was
heated to 110 ꢀC in an oil bath and stirred for 24 h at this temper-
ature. After being cooled to room temperature, the reaction mix-
ture was poured into water and extracted with CH2Cl2 (3ꢂ40 mL).
The combined organic extracts were washed with brine, dried
(Mg2SO4), and concentrated to dryness under vacuum. The crude
product was purified by flash column chromatography (petroleum
ether/CH2Cl2¼4:1) to give 0.122 g (41%) of product Tr-TPA3 as
a yellow solid.
References and notes
1. (a) Jenekhe, S. A. Adv. Mater. 1995, 7, 309; (b) Grimsdale, A. C.; Holmes,
A. B. Angew. Chem., Int. Ed. 1998, 37, 402; (c) Miller, J. S. Adv. Mater. 1993,
5, 671; (d) Carroll, R. L.; Gorman, C. B. Angew. Chem., Int. Ed. 2002, 41,
4378.
2. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270,
1789.
3. Bhawalkar, J. D.; He, G. S.; Prasad, P. N. Rep. Prog. Phys. 1996, 59, 1041.
4. Schon, J. H.; Dodabalapur, A.; Kloc, C.; Batlogg, B. Science 2000, 290, 963.
5. Schryver, F. C.; Vosch, T.; Cotlet, M.; Auweraer, M. V.; Mllen, K.; Hofkens, J. Acc.
Chem. Res. 2005, 38, 514; (b) Pan, J.; Zhu, W.; Li, S.; Zeng, W.; Cao, Y.; Tian, H.
Polymer 2005, 46, 7658; (c) Li, S.; Zhong, G.; Zhu, W.; Li, F.; Pan, J.; Huang, W.;
Tian, H. J. Mater. Chem. 2005, 15, 3221.
6. (a) Shirota, Y. J. Mater. Chem. 2000, 10, 1; (b) Shirota, Y. J. Mater. Chem. 2005, 15,
75; (c) Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953; (d) Thelakkat, M.
Macromol. Mater. Eng. 2002, 287, 442.
1H NMR (500 MHz, CDCl3)
d
8.35 (d, J¼8.0 Hz, 3H, Ar), 7.57 (d,
J¼9.0 Hz, 6H, Ar), 7.46 (d, J¼8.0 Hz, 6H, Ar), 7.26–7.32 (m, 12H, Ar),
7.13–7.22 (m, 18H, Ar), 7.09 (d, J¼8.5 Hz, 6H, Ar), 7.05 (t, J¼7.5 Hz,
6H, Ar), 2.96–3.01 (m, 3H, CH2), 2.11–3.16 (m, 3H, CH2), 0.88–0.93
(m, 12H, CH2), 0.49–0.59 (m, 12H, CH2), 0.46 (t, J¼7.5 Hz 18H, CH3).
13C NMR (75 MHz, CDCl3) 13.86, 22.90, 26.57, 36.81, 55.53,120.08,
122.86, 123.60, 124.50, 124.86, 127.32, 127.70, 129.28, 131.79,
135.70, 138.19, 139.84, 145.09, 147.24, 147.57, 154.17. MALDI/
TOFMS: calcd for C111H111N3: 1485.9, found: 1487.6. Anal. Calcd for
7. (a) Wei, P.; Bi, X.; Wu, Z.; Xu, Z. Org. Lett. 2005, 7, 3199; (b) Li, J.; Liu, D.; Li, Y.;
Lee, C.-S.; Kwong, H.-L.; Lee, S.-T. Chem. Mater. 2005, 17, 1208; (c) Xia, H.; He, J.;
Peng, P.; Zhou, Y.; Li, Y.; Tian, J. Tetrahedron Lett. 2007, 48, 5877.
´
´
8. Gomez-Lor, B.; de Frutos, O.; Ceballos, P. A.; Granier, T.; Echavarren, A. M. Eur. J.
Org. Chem. 2001, 2107.
9. (a) Abdourazak, A. H.; Marcinow, Z.; Sygula, A.; Sygula, R.; Rabideau, P. W. J. Am.
Chem. Soc. 1995, 117, 6410; (b) Demlow, E. V.; Kelle, T. Synth. Commun. 1997, 27,
´
2021; (c) Go´ mez-Lor, B.; de Frutos, O.; Echavarren, A. M. Chem. Commun. 1999,
C
111H111N3: C, 89.65; H, 7.52; N, 2.83. Found: C, 89.54; H, 7.75; N,
´
´
´
2431; (d) Gomez-Lor, B.; Gonzalez-Cantalapiedra, E.; Ruiz, M.; de Frutos, O.;
Ca´rdenas, D. J.; Santos, A.; Echavarren, A. M. Chem.dEur. J. 2004, 10, 2601.
10. Moberg, C. Angew. Chem., Int. Ed. 1998, 37, 248.
2.76.
11. (a) Destrade, C.; Malthete, J.; Tinh, N. H.; Gasparoux, H. Phys. Lett. A 1980, 78, 82;
(b) Tinh, N. H.; Malthete, J.; Destrade, C. Mol. Cryst. Liq. Cryst. 1981, 64, 291; (c)
Destrade, C.; Gasparoux, H.; Babeau, A.; Tinh, N. H.; Malthete, J. Mol. Cryst. Liq.
Cryst. 1981, 67, 693; (d) Foucher, P.; Destrade, C.; Tinh, N. H.; Malthete, J.;
Levelut, A. M. Mol. Cryst. Liq. Cryst. 1984, 108, 219; (e) Tinh, N. H.; Foucher, P.;
Destrade, C.; Levelut, A. M.; Malthete, J. Mol. Cryst. Liq. Cryst. 1984, 111, 277; (f)
Raghunathan, V. A.; Madhusudana, N. V.; Chandrasekhar, S.; Destrade, C. Mol.
Cryst. Liq. Cryst. 1987, 148, 77; (g) Buisine, J. M.; Cayuela, R.; Destrade, C.; Tinh,
N. H. Mol. Cryst. Liq. Cryst. 1987, 144, 137.
12. (a) Perova, T. S.; Vij, J. K. Adv. Mater. 1995, 7, 919; (b) Sandstroem, D.; Nygren, M.;
Zimmermann, H.; Maliniak, A. J. Phys. Chem. 1995, 99, 6661; (c) Fontes, E.;
Heiney, P. A.; Ohba, M.; Haseltine, J. N.; Smith, A. B. Phys. Rev. A 1988, 37, 1329;
(d) Lee, W. K.; Wintner, B. A.; Fontes, E.; Heiney, P. A.; Ohba, M.; Haseltine, J. N.;
Smith, A. B. Liq. Cryst. 1989, 4, 87; (e) Lee, W. K.; Heiney, P. A.; Ohba, M.; Ha-
seltine, J. N.; Smith, A. B. Liq. Cryst. 1990, 8, 839; (g) Goldfarb, D.; Belsky, I.; Luz,
Z.; Zimmermann, H. J. Chem. Phys. 1983, 79, 6203.
4.8. Compound Tr-TPA9
A round-bottomed flask (25 mL) was oven dried and cooled
under N2 atmosphere. Compound 7 (0.21 g, 0.2 mmol), compound
5 (0.58 g, 0.72 mmol), K3PO4 (0.21 g, 1 mmol), and Pd(OAc)2 were
dissolved in dry DMAc (10 mL). The reaction mixture was heated to
110 ꢀC in an oil bath and stirred for 24 h at this temperature. After
being cooled to room temperature, the reaction mixture was
poured into water and extracted with CH2Cl2 (3ꢂ40 mL). The
combined organic extracts were washed with brine, dried
(Mg2SO4), and concentrated to dryness under vacuum. The crude
product was purified by flash column chromatography (petroleum