in organic synthesis.7 They are conveniently prepared in various
methods,8 and are employed as electrophiles in a wide variety
of addition conditions,9 which provide a useful route to
sulfonamides. We report herein an efficient method for the
synthesis of arylidene dimalonates from a one-flask tandem
Knoevenagel-Michael addition of aryl sulfonimines with
diethyl malonate in the presence of a catalytic amount of base.
Compared to the extensive studies on the nucleophilic
addition of sulfonimines, the Mannich-type reaction of sulfon-
imines with malonates, which can be used to synthesize â-amino
acid derivatives,10 has received much less scrutiny.11 During
the course of our studies on the reactivity of imines,12 we found
that the treatment of sulfonimine 1a with diethyl malonate at
room temperature gave the expected addition product 3a in 89%
yield. However, when the reaction was run at a higher
temperature (50 °C), a dual-addition product,13 benzylidene
dimalonate 2a, was isolated in 75% yield (eq 1). Gong and Kato
Tandem Knoevenagel-Michael Addition of Aryl
Sulfonimines with Diethyl Malonate for Synthesis
of Arylidene Dimalonates
Renhua Fan,* Weizi Wang, Dongming Pu, and Jie Wu*
Department of Chemistry, Fudan UniVersity, 220 Handan Road,
Shanghai, 200433, China
ReceiVed April 7, 2007
A highly efficient, one-flask tandem Knoevenagel-Michael
addition reaction of sulfonimines with diethyl malonate in
the presence of a catalytic amount of base affords the
corresponding arylidene dimalonates in good to excellent
yields.
Arylidene dimalonate has the potential to serve as a bone-
affinity agent in the treatment of bone disease,1 and as the
precursor for the synthesis of 3-Ar-glutaric acid.2 Usually it is
synthesized in two steps: the Knoevenagel condensation3 of
aromatic aldehydes with malonate or bromomalonate to form
arylidene malonate followed by the Michael addition4 of
arylidene malonate with malonate to produce arylidene dima-
lonate.5 Mori has reported a tandem Knoevenagel-Michael
addition of alkyl aldehyde with malonate in the presence of
stoichiometric piperidinium acetate;6 however, to our know-
ledge, no efficient one-flask synthesis of arylidene dimalonate
has been reported. On the other hand, sulfonimines are of
increasing importance due to their versatility as intermediates
have also observed the dual-addition product in the NaH-induced
addition of diethyl malonate to 4-methoxy-N-(2,2,2-trifluoro-
(7) Weinreb, S. M. Top. Curr. Chem. 1997, 190, 131.
(8) For selected examples see: (a) Vishwakarma, L. C.; Stringer, O. D.;
Davis, F. A. Org. Synth. 1987, 66, 203. (b) Trost, B. M.; Marrs, C. J. Org.
Chem. 1991, 56, 6468. (c) Georg, G. I.; Harriman, G. C. B.; Peterson, S.
A. J. Org. Chem. 1995, 60, 7366. (d) Chemla, F.; Hebbe, V.; Normant, J.
F. Synthesis 2000, 75. (e) Wolfe, J. P.; Ney, J. E. Org. Lett. 2003, 5, 4607.
(f) Lee, K. Y.; Lee, C. G.; Kim, J. N. Tetrahedron Lett. 2003, 44, 1231.
(9) For selected examples see: (a) Duan, H. F.; Jia, Y. X.; Wang, L. X.;
Zhou, Q. L. Org. Lett. 2006, 8, 2567. (b) Fujisawa, H.; Takahashi, E.;
Mukaiyama, T. Chem. Eur. J. 2006, 12, 5082. (c) Le Fur, N.; Mojovic, L.;
Ple´, N.; Turck, A.; Reboul, V.; Metzner, P. J. Org. Chem. 2006, 71, 2609.
(d) Ooi, T.; Uematsu, Y.; Maruoka, K. J. Am. Chem. Soc. 2006, 128, 2548.
(e) Boger, D. L.; Corbett, W. L.; Curran, T. T.; Kasper, A. M. J. Am. Chem.
Soc. 1991, 113, 1713. (f) Trost, B. M.; Marrs, C. M. J. Am. Chem. Soc.
1993, 115, 6636. (g) Miyabe, H.; Ueda, M.; Naito, T. Chem. Commun.
2000, 2059. (h) Yamada, K.; Fujihara, H.; Yamamoto, Y.; Miwa, Y.; Taga,
T.; Tomioka, K. Org. Lett. 2002, 4, 3509. (i) Aggarwal, V. K.; Alonso, E.;
Ferrara, M.; Spey, S. E. J. Org. Chem. 2002, 67, 2335. (j) Yamanaka, M.;
Nishida, A.; Nakagawa, M. Org. Lett. 2000, 2, 159. (k) Sisko, J.; Weinreb,
S. M. J. Org. Chem. 1990, 55, 393. (l) Wang, D. K.; Zhou, Y. G.; Tang,
Y.; Hou, X. L.; Dai, L. X. J. Org. Chem. 1999, 64, 4233. (m) Zhang, W.
X.; Ding, C. H.; Luo, Z. B.; Hou, X. L.; Dai, L. X. Tetrahedron Lett. 2006,
47, 8391. (n) Shi, M.; Chen, L. H.; Li, C. Q. J. Am. Chem. Soc. 2005, 127,
3790.
(10) For selected examples of the addition of imines with malonates
see: (a) Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048.
(b) Shou, W. G.; Yang, Y. Y.; Wang, Y. G. Tetrahedron Lett. 2006, 47,
1845. (c) Marigo, M.; Kjærsgaard, A.; Juhl, K.; Gathergood, N.; Jørgensen,
K. A. Chem. Eur. J. 2003, 9, 2359. (d) Martin, S. F. Acc. Chem. Res. 2002,
35, 895. (e) Tommasi, G.; Bruni, P.; Greci, L.; Sgarabotto, P.; Righi, L. J.
Chem. Soc., Perkin Trans. 1 1999, 681. (f) Lounasmaa, M.; Miettinen, J.;
Hanhinen, P.; Jokela, R. Tetrahedron Lett. 1997, 38, 1455. (g) Shida, N.;
Kubota, Y.; Fukui, H.; Asao, N.; Kadota, I.; Yamamoto, Y. Tetrahedron
Lett. 1995, 36, 5023. (h) Swenton, J. S.; Bonke, B. R.; Clark, W. M.; Chen,
C. P.; Martin, K. V. J. Org. Chem. 1990, 55, 2027. (i) Adam, J. M.; Winkler,
T. C.; Basel, S. HelV. Chim. Acta 1984, 67, 2186. (j) Dijkink, J.; Zonjee,
J. N.; De Jong, B. S.; Speckamp, W. N. Heterocycles 1983, 20, 1255.
(1) Thompson, W. J.; Thompson, D. D.; Anderson, P. S.; Rodan, G. A.
Eur. Pat. Appl. 1989, 30.
(2) (a) Leonardi, A.; Barlocco, D.; Montesano, F.; Cignarella, G.; Motta,
G.; Testa, R.; Poggesi, E.; Seeber, M.; De Benedetti, P. G.; Fanelli, F. J.
Med. Chem. 2004, 47, 1900. (b) Guzman, A.; Romero, M. J. Org. Chem.
1990, 55, 5793. (c) Boehm, T.; Themlitz, R. Arch. Pharm. 1934, 272, 406.
(3) For selected examples see: (a) Knoevenagel, E. Chem. Ber. 1896,
29, 172. Knoevenagel, E. Chem. Ber. 1898, 31, 730. (b) Jones, G. Organic
Reactions; Wiley: New York, 1967; Vol. 15, p 204. (c) Tietze, L. F.;
Beifuss, U. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Heathcock, C. H., Eds.; Pergamon Press: Oxford, UK, 1991; Vol. 2,
Chapter 1.11, p 341. (d) Harjani, J. R.; Nara, S. J.; Salunkhe, M. M.
Tetrahedron Lett. 2002, 43, 1127. (e) Bigi, F.; Chesini, L.; Maggi, R.;
Sartori, G. J. Org. Chem. 1999, 64, 1033. (f) Green, B.; Crane, R. I.;
Khaidem, I. S.; Leighton, R. S.; Newaz, S. S.; Smyser, T. E. J. Org. Chem.
1985, 50, 640. (g) Cabello, J. A.; Campelo, J. M.; Garcia, E.; Luna, D.;
Marinas, J. M. J. Org. Chem. 1984, 49, 5195. (h) Tietze, F.; Beifuss, U.
Org. Synth. 1992, 71, 167.
(4) Bergmann, E. D.; Ginsburg, D.; Pappo, R. Organic Reactions;
Wiley: New York, 1959; Vol. 5, p 179.
(5) Ferrand, G.; Dumas, H.; Depin, J. C.; Chavernac, G. Eur. J. Med.
Chem. 1987, 22, 337.
(6) Takikawa, H.; Koizumi, J.; Kato, Y.; Mori, K. J. Chem. Soc., Perkin
Trans. 1 1999, 2271.
10.1021/jo070726e CCC: $37.00 © 2007 American Chemical Society
Published on Web 06/22/2007
J. Org. Chem. 2007, 72, 5905-5907
5905