J = 26.4 Hz, J = 10.0 Hz), 22.58 (s), 21.84 (s), 18.67 (s), 8.62
(d, J = 83.0 Hz, Pd–CH3). Anal. Calc. for C55H65N2P2PdBF4: C,
65.45; H, 6.49; N, 2.76. Found: C, 65.66; H, 6.36; N, 2.83. MS (LSI-
MS) m/z (relative intensity): 921.7 (20, M+), 721.6 (16), 403.4 (100,
ylidene + CH3).
References
1 W. J. Marshall and V. V. Grushin, Organometallics, 2003, 22, 1591–
1593.
2 (a) A. A. Danopoulos, N. Tsoureas, J. C. Green and M. B. Hursthouse,
Chem. Commun., 2003, 756–757; (b) N. Tsoureas, A. A. Danopoulos,
A. A. D. Tulloch and M. E. Light, Organometallics, 2003, 22, 4750–
4758.
3 S. Caddick, F. G. N. Cloke, P. B. Hitchcock, J. Leonard, A. K. d. K.
Lewis, D. McKerrecher and L. R. Titcomb, Organometallics, 2002, 21,
4318–4319.
4 D. S. McGuinness, N. Saendig, B. F. Yates and K. J. Cavell, J. Am.
Chem. Soc., 2001, 123, 4029–4040.
5 A. M. Magill, D. C. Graham, B. F. Yates, K. J. Cavell, B. W. Skelton
and A. H. White, Organometallics, 2007, submitted.
6 M. Hackett and G. M. Whitesides, J. Am. Chem. Soc., 1988, 110, 1449–
1462.
7 M. Hackett, J. A. Ibers, P. Jernakoff and G. M. Whitesides, J. Am.
Chem. Soc., 1986, 108, 8094–8095.
8 S. Ganguly, J. T. Mague and O. M. Roundhill, Acta Crystallogr., Sect.
C, 1994, C50, 217.
9 M. Hackett, J. A. Ibers and G. M. Whitesides, J. Am. Chem. Soc., 1988,
110, 1436–1448.
10 M.-D. Su and S.-Y. Chu, Inorg. Chem., 1998, 37, 3400–3406.
11 R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1982, 21, 711.
12 Y. Pan, J. T. Mague and M. J. Fink, J. Am. Chem. Soc., 1993, 115,
3842–3843.
Reaction of 3a with 4-bromoacetophenone
A CD3CN solution of 3a (0.0402 g, 0.0561 mmol) and 4-
bromoacetophenone (0.0552 g, 0.277 mmol) was made up in an
NMR tube fitted with a Young’s tap. This solution was heated
to 65 ◦C overnight. After this time, the reaction mixture was
chromatographed on silica gel using CHCl3–CH3CN (20 : 1)
as eluent. The fractions containing a product with Rf = 0.15
were combined and concentrated in vacuo. The residue was taken
up in CD3CN, which caused large diamond-shaped crystals of
(4-acetylphenyl)PdBr(dppp) to form. These were collected and
1
dried in vacuo. H NMR (CD2Cl2, 300 MHz): d 7.85–7.78 (m,
4H), 7.50–7.48 (m, 6H), 7.36–7.29 (m, 6H), 7.20–7.04 (m, 8H),
2.64–2.55 (m, 2H, PCH2), 2.47–2.40 (m, 2H, PCH2), 2.35 (s,
1
3H, C(O)CH3), 1.95–1.76 (br m, 2H, PCH2CH2CH2P). 31P{ H}
NMR (CD2Cl2, 121.4 MHz): d 15.92 (d, J = 51 Hz), −8.01 (d,
J = 51 Hz). Anal. Calc. for C37H33P2PdBrO: C, 59.90; H, 4.48.
Found: C, 59.71, H, 4.69. MS (LSI-MS) m/z (relative intensity):
13 R. Landtiser, Y. Pan and M. J. Fink, Phosphorus, Sulfur Silicon Relat.
Elem., 1994, 93–94, 393–394.
14 S. M. Reid and M. J. Fink, Organometallics, 2001, 20, 2959–2961.
15 J. E. Marcone and K. G. Moloy, J. Am. Chem. Soc., 1998, 120, 8527–
8528.
719.1 (5, M + H+), 637.2 (25, M+ − Br), 599.0 (33, M+
−
PhC(O)CH3), 518.1 (68, M+ − Br-PhC(O)CH3), 391.3 (100).
HR-MS for C35H34OBr104PdP2 (M + H): calc, 715.03085; obsd,
715.01510.
16 M. J. Green, K. J. Cavell, B. W. Skelton and A. H. White, J. Organomet.
Chem., 1998, 554, 175–179.
17 (a) G. P. C. M. Dekker, C. J. Elsevier, K. Vrieze and P. W. N. M. van
Leeuwen, Organometallics, 1992, 11, 1598–1603; (b) C. S. Shultz, J.
Ledford, J. M. DeSimone and M. Brookhart, J. Am. Chem. Soc., 2000,
122, 6351–6356; (c) W. Oberhauser, C. Bachmann, T. Stampfl, R. Haid
and P. Bru¨ggeller, Polyhedron, 1997, 16, 2827–2835.
Structure determination
Full spheres of CCD area-detector diffractometer data were mea-
˚
18 M. Ludwig, S. Stro¨mberg, M. Svensson and B. Akermark,
sured (Bruker AXS instrument, x-scans, 2hmax = 75◦; monochro-
Organometallics, 1999, 18, 970–975.
19 (a) A. Furstner, G. Seidel, D. Kremzow and C. W. Lehmann,
Organometallics, 2003, 22, 907–909; (b) A. A. D. Tulloch, S. Win-
ston, A. A. Danopoulos, G. Eastham and M. B. Hursthouse, Dal-
ton Trans., 2003, 699–708; (c) W. A. Herrmann, V. P. W. Bo¨hm,
C. W. K. Gsto¨ttmayr, M. Grosche, C.-P. Reisinger and T. Weskamp,
J. Organomet. Chem., 2001, 617–618, 616–628; (d) H. Glas, E.
Herdtweck, M. Spiegler, A. K. Pleier and W. R. Thiel, J. Organomet.
Chem., 2001, 626, 100–105; (e) J. A. Chamizo, J. Morgado, M.
Castro and S. Bernes, Organometallics, 2002, 21, 5428–5432; (f) W. A.
Herrmann, M. Elison, J. Fischer, C. Kocher and G. R. J. Artus, Angew.
Chem., Int. Ed. Engl., 1995, 34, 2371–2374.
˚
matic Mo-Ka radiation, k = 0.71073 A; T ca. 153 K) yielding
Nt(otal) reflections, these merging to N unique (Rint cited) after
‘empirical’/multiscan absorption correction, No with F > 4r(F)
being employed in the full matrix least squares refinements on
|F|; anisotropic displacement parameters were refined for the
non-hydrogen atoms, (x ,y, z, Uiso
)
estimates. Conventional
H
residuals R, Rw on |F| are cited at convergence (reflection weights:
(r2(F) + 0.00nwF)2)−1. Neutral atom complex scattering factors
were employed within the Xtal 3.7 program system.38 Pertinent
results are presented in the tables and figures, the latter showing
50% probability amplitude displacement envelopes for the non-
20 R. E. Douthwaite, M. L. H. Green, P. J. Silcock and P. T. Gomes,
J. Chem. Soc., Dalton Trans., 2002, 1386.
21 (a) W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290–1309;
(b) A. M. Magill, D. S. McGuinness, K. J. Cavell, G. J. P. Britovsek, V. C.
Gibson, A. J. P. White, D. J. Williams, A. H. White and B. W. Skelton,
J. Organomet. Chem., 2001, 617–618, 546–560; (c) W. A. Herrmann, M.
Elison, J. Fischer, C. Ko¨cher and G. R. J. Artus, Chem.–Eur. J., 1996,
2, 772–780.
22 D. S. McGuinness, K. J. Cavell, B. W. Skelton and A. H. White,
Organometallics, 1999, 18, 1596–1605.
23 D. S. McGuinness, M. J. Green, K. J. Cavell, B. W. Skelton and A. H.
White, J. Organomet. Chem., 1998, 565, 165–178.
˚
hydrogen atoms, hydrogen atoms having arbitrary radii of 0.1 A.
Crystal/refinement data 2a·Et2O. C38H73BF4OP2Pd, M =
829.3. Monoclinic, space group P21/c (C52h, No 14), a =
◦
˚
11.7468(7), b = 12.3711(8), c = 28.598(2) A, b = 94.917(1) , V =
3
−3
−1
˚
4141 A . Dc (Z = 4) = 1.330 g cm . l(Mo) = 0.57 mm ; specimen:
0.21 × 0.20 × 0.16 mm, Tmin/max = 0.89. Nt = 82 879, N = 21 630
(Rint = 0.045), No = 15400; R = 0.045, Rw = 0.065 (nw = 2); S =
24 Y. Pan, J. T. Mague and M. J. Fink, Organometallics, 1992, 11, 3495.
25 Y. Koide, S. G. Bott and A. R. Barron, Organometallics, 1996, 15,
2213.
−3
˚
1.06. |Dqmax| = 1.1 e A .
26 F. H. Allen, Acta Crystallogr., Sect. B, 2002, 58, 380–388; I. J. Bruno,
J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe,
J. Pearson and R. Taylor, Acta Crystallogr., Sect. B, 2002, 58, 389–
397.
Acknowledgements
We are indebted to the Australian Research Council for
funding and providing an Australian Postgraduate Award for
A. M. M. Johnson Matthey is acknowledged for a generous loan
of palladium salts.
27 In the case of Pd(dppe)Cl2 and Pd(dcype)Cl2 complexes Pd–Cl bond
˚
distances are within 0.02 A. See: (a) A. S. Batsanov, J. A. K. Howard,
G. S. Robertson and M. Kilner, Acta Crystallogr., Sect. E, 2001, 57,
m301; (b) W. L. Steffen and G. J. Palenik, Inorg. Chem., 1976, 15, 2432;
This journal is
The Royal Society of Chemistry 2007
Dalton Trans., 2007, 3398–3406 | 3405
©