number. By attaching various functional groups to the focal
point or periphery of these monodendrons, it was shown that
different supramolecular interactions such as van der Waals,
hydrogen bonds, hydrophobic and fluorophobic effects, and
ion complexation by crown ethers could dominate the
formation of supramolecular assemblies of these monoden-
drons in the liquid crystalline state.5 Zimmerman demon-
strated the supramolecular construction of a nanometer-sized
dendrimer by self-organization of functionalized monoden-
drons through intermolecular hydrogen-bonding interactions.6
Intramolecular hydrogen-bonding interactions between ter-
minal amides are thought to be responsible for the rigidity
of the outer shell of amidated poly(propylene imine) den-
drimers.7 However, there are few examples wherein den-
drimer conformation at each generational shell is restricted
through intramolecular hydrogen bonding. Intramolecular
hydrogen-bonding interactions have been exploited to im-
prove the rigidity of an extended-core discotic liquid crystal.8
The goal of this paper is to describe the synthesis and
structural characterization of monodendrons whose confor-
mation is restricted through the intervention of intramolecular
hydrogen-bonding and electrostatic interactions present in
the AB2 building block.
Pyridine-2,6-dicarboxamide derivatives exist in a confor-
mation that places the amide NH groups in close proximity
to the pyridine N due to intramolecular hydrogen bonding
and repulsive electrostatic interactions between the amide
oxygens.9 This conformational preference has been exploited
to control the three-dimensional folding of molecular recep-
tors10 and catenanes.11 Moreover, Hamilton and co-workers
demonstrated that linking two anthranilamides through a
pyridine-2,6-dicarboxylic acid moiety produces a helical
conformation in the resultant molecule that is stabilized by
several intramolecular hydrogen bonds.12 The ability of these
pyridine-2,6-dicarboxamide derivatives to coordinate to
metals such as copper has also been utilized to create a rigid
metallohelical complex that, in one case, experienced
spontaneous resolution in the crystal lattice.13 On this basis,
we constructed dendritic wedges using 4-aminopyridine-2,6-
dicarboxamide as the branching AB2 unit to preorganize the
interior of the dendrons through intramolecular hydrogen-
bonding interactions.
4-Chloropyridine-2,6-dicarbonyl chloride (2) was chosen
as the branching monomer wherein convergent generational
growth is accomplished using amide bond-forming reactions
with the acid chlorides and focal point activation occurs by
NaN3 displacement of the 4-chloro group followed by
hydrogenation. Initially, methyl esters were incorporated as
terminal groups; however, beginning at the second genera-
tion, solubility was poor in all common organic solvents
(THF, DMF, DMSO, EtOAc), except for chlorinated solvents
such as CHCl3 and CH2Cl2, which afforded only moderate
solubility. Therefore, dodecyl ester groups were placed on
the periphery to improve the solubility of the dendrons.
Monomer 2 was prepared by treating chelidamic acid (1)
with neat POCl3 at 100 °C (Scheme 1).14 The synthesis was
initiated by exposing dodecyl anthranilate, prepared by
transesterifcation of methyl anthranilate with dodecyl alcohol,
to 2 in pyridine, which afforded the first-generation dendron
[(C12H25O2C)2-[G1]-Cl] (3a). Displacement of the 4-chloro
group with NaN3 in DMF at 50 °C installed an azido group
at the focal point, giving dendron [(C12H25O2C)2-[G1]-N3]
(3b). Hydrogenation over Pd-C in THF at 50 psi gave the
amino dendron [(C12H25O2C)2-[G1]-NH2] (3c) in quantitative
yield, which was subsequently elaborated to the second-
generation dendron [(C12H25O2C)4-[G2]-Cl] (4a) by reaction
with 2 in pyridine. The solubility of 4a was significantly
enhanced in many solvents relative to the methyl ester
analogue; however, in polar solvents such as DMSO and
DMF, solubility was limited. Therefore, conversion of 4a
to the corresponding azide by displacement with NaN3 was
performed in THF-DMF (1:3) at 50 °C to maintain
homogeneous conditions. Subsequent hydrogenation over
Pd-C and reaction with 2 afforded the third-generation
dendron [(C12H25O2C)8-[G3]-Cl] (5a). Repetition of the NaN3
displacement-hydrogenation activation sequence afforded
(5) (a) Percec, V.; Johansson, G.; Ungar, G.; Zhou, J. J. Am. Chem. Soc.
1996, 118, 9855. (b) Balagurusamy, V. S. K.; Ungar, G.; Percec, V.;
Johansson, G. J. Am. Chem. Soc. 1997, 119, 1539. (c) Hudson, S. D.; Jung,
H. T.; Percec, V.; Cho, W. D.; Johansson, G.; Ungar, G.; Balagurusamy,
V. S. K. Science 1997, 278, 449. (d) Percec, V.; Cho, W. D.; Mosier, P.
E.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem. Soc. 1998, 120, 11061. (e)
Percec, V.; Ahn, C. H.; Ungar, G.; Yeardley, D. J. P.; Moller, M.; Sheiko,
S. S. Nature 1998, 391, 161. (f) Percec, V.; Ahn, C.-H.; Bera, T. K.; Ungar,
G.; Yeardley, D. J. P. Chem. Eur. J. 1999, 5, 1070.
(6) (a) Zimmerman, S. C.; Zeng, F.; Reichert, D. E. C.; Kolotuchin, S.
V. Science 1996, 271, 1095. (b) Thiyagarajan, P.; Zeng, F.; Ku, C. Y.;
Zimmerman, S. C. J. Mater. Chem. 1997, 7, 1221. (c) Suarez, M.; Lehn,
J.-M.; Zimmerman, S. C.; Skoulios, A.; Heinrich, B. J. Am. Chem. Soc.
1998, 120, 9526.
(7) (a) Stevelmans, S.; van Hest, J. C. M.; Jansen, J. F. G. A.; van Boxtel,
D. A. F. J.; de Brabander-van den Berg, E. M. M.; Meijer, E. W. J. Am.
Chem. Soc. 1996, 118, 7398. (b) Put, E. J. H.; Clays, K.; Persoons, A.;
Biemans, H. A. M.; Luijkx, C. P. M.; Meijer, E. W. Chem. Phys. Lett.
1996, 260, 136. (c) Bosman, A. W.; Janssen, R. A. J.; Meijer, E. W.
Macromolecules 1997, 30, 3606. (d) Bosman, A. W.; Bruining, M. J.;
Kooijman, H.; Spek, A. L.; Janssen, R. A. J.; Meijer, E. W. J. Am. Chem.
Soc. 1998, 120, 8547.
(8) (a) Palmans, A. R. A.; Vekemans, J. A. J. M.; Meijer, E. W. Recl.
TraV. Chim. Pays-Bas 1995, 114, 277. (b) Palmans, A. R. A.; Vekemans,
J. A. J. M.; Fischer, H.; Hikmet, R. A.; Meijer, E. W. Chem. Eur. J. 1997,
3, 300. (c) Palmans, A. R. A.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer,
E. W. Angew. Chem., Int. Ed. Engl. 1997, 36, 2648. (d) Palmans, A. R. A.;
Vekemans, J. A. J. M.; Hikmet, R. A.; Fischer, H.; Meijer, E. W. AdV.
Mater. 1998, 10, 873. (e) Langeveld-Voss, B. M. W.; Waterval, R. J. M.;
Janssen, R. A. J.; Meijer, E. W. Macromolecules 1999, 32, 227.
(9) For X-ray crystal structures, see: (a) Newkome, G. R.; Fronczek, F.
R.; Kohli, D. K. Acta Crystallogr. 1981, B37, 2114. (b) Alcock, N. W.;
Moore, P.; Reader, J. C.; Roe, S. M. J. Chem. Soc., Dalton Trans. 1988,
2959. (c) Malone, J. F.; Murray, C. M.; Dolan, G. M.; Docherty, R.; Lavery,
A. J. Chem. Mater. 1997, 9, 2983.
(10) (a) Hunter, C. A.; Purvis, D. H. Angew. Chem., Int. Ed. Engl. 1992,
6, 792. (b) Crisp, G. T.; Jiang, Y.-L. Tetrahedron 1999, 55, 549.
(11) Leigh, D. A.; Murphy, A.; Smart, J. P.; Deleuze, M. S.; Zerbetto,
F. J. Am. Chem. Soc. 1998, 120, 6458.
(12) (a) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc.
1997, 119, 10587. (b) Hamuro. Y.; Geib, S. J.; Hamilton, A. D. J. Am.
Chem. Soc. 1996, 118, 7529.
(13) (a) Kawamoto, T.; Hammes, B. S.; Haggerty, B.; Yap, G. P. A.;
Rheingold, A. L.; Borovik, A. S. J. Am. Chem. Soc. 1996, 118, 285. (b)
Yu, Q.; Baroni, T. E.; Liable-Sands, L.; Rheingold, A. L.; Borovic, A. S.
Tetrahedron Lett. 1998, 39, 6831.
(14) Bhattacharya, S.; Snehalatha, K.; George, S. K. J. Org. Chem. 1998,
63, 27.
240
Org. Lett., Vol. 2, No. 3, 2000