ACS Medicinal Chemistry Letters
Letter
(16) Wang, T.; Goodall, M. L.; Gonzales, P.; Sepulveda, M.; Martin,
K. R.; Gately, S.; MacKeigan, J. P. Synthesis of improved lysomotropic
autophagy inhibitors. J. Med. Chem. 2015, 58, 3025−3035.
(17) Liu, J.; Xia, H.; Kim, M.; Xu, L.; Li, Y.; Zhang, L.; Cai, Y.;
Norberg, H. V.; Zhang, T.; Furuya, T.; Jin, M.; Zhu, Z.; Wang, H.; Yu,
J.; Li, Y.; Hao, Y.; Choi, A.; Ke, H.; Ma, D.; Yuan, J. Beclin1 controls
the levels of p53 by regulating the deubiquitination activity of USP10
and USP13. Cell 2011, 147, 223−234.
(18) Lazarus, M. B.; Novotny, C. J.; Shokat, K. M. Structure of the
human autophagy initiating kinase ULK1 in complex with potent
inhibitors. ACS Chem. Biol. 2015, 10, 257−261.
(19) Lazarus, M. B.; Shokat, K. M. Discovery and structure of a new
inhibitor scaffold of the autophagy initiating kinase ULK1. Bioorg. Med.
Chem. 2015, 23, 5483−5488.
REFERENCES
■
(1) He, C.; Klionsky, D. J. Regulation mechanisms and signaling
pathways of autophagy. Annu. Rev. Genet. 2009, 43, 67−93.
(2) Klionsky, D. J.; et al. Guidelines for the use and interpretation of
assays for monitoring autophagy (3rd edition). Autophagy 2016, 12,
1−222.
(3) Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M.;
Han, W.; Lou, F.; Yang, J.; Zhang, Q.; Wang, X.; He, C.; Pan, H.
Autophagy and chemotherapy resistance: a promising therapeutic
target for cancer treatment. Cell Death Dis. 2013, 4, e838.
(4) Galluzzi, L.; Pietrocola, F.; Bravo-San Pedro, J. M.; Amaravadi, R.
K.; Baehrecke, E. H.; Cecconi, F.; Codogno, P.; Debnath, J.; Gewirtz,
D. A.; Karantza, V.; Kimmelman, A.; Kumar, S.; Levine, B.; Maiuri, M.
C.; Martin, S. J.; Penninger, J.; Piacentini, M.; Rubinsztein, D. C.;
Simon, H. U.; Simonsen, A.; Thorburn, A. M.; Velasco, G.; Ryan, K.
M.; Kroemer, G. Autophagy in malignant transformation and cancer
progression. EMBO J. 2015, 34, 856−880.
(5) Fujii, S.; Mitsunaga, S.; Yamazaki, M.; Hasebe, T.; Ishii, G.;
Kojima, M.; Kinoshita, T.; Ueno, T.; Esumi, H.; Ochiai, A. Autophagy
is activated in pancreatic cancer cells and correlates with poor patient
outcome. Cancer Sci. 2008, 99, 1813−1819.
(6) Yang, S.; Wang, X.; Contino, G.; Liesa, M.; Sahin, E.; Ying, H.;
Bause, A.; Li, Y.; Stommel, J. M.; Dell’antonio, G.; Mautner, J.; Tonon,
G.; Haigis, M.; Shirihai, O. S.; Doglioni, C.; Bardeesy, N.; Kimmelman,
A. C. Pancreatic cancers require autophagy for tumor growth. Genes
Dev. 2011, 25, 717−729.
(7) Rosenfeldt, M. T.; O’Prey, J.; Morton, J. P.; Nixon, C.; MacKay,
G.; Mrowinska, A.; Au, A.; Rai, T. S.; Zheng, L.; Ridgway, R.; Adams,
P. D.; Anderson, K. I.; Gottlieb, E.; Sansom, O. J.; Ryan, K. M. p53
status determines the role of autophagy in pancreatic tumour
development. Nature 2013, 504, 296−300.
(8) Yang, A.; Rajeshkumar, N. V.; Wang, X.; Yabuuchi, S.; Alexander,
B. M.; Chu, G. C.; Von Hoff, D. D.; Maitra, A.; Kimmelman, A. C.
Autophagy is critical for pancreatic tumor growth and progression in
tumors with p53 alterations. Cancer Discovery 2014, 4, 905−913.
(9) Gomez, V. E.; Giovannetti, E.; Peters, G. J. Unraveling the
complexity of autophagy: Potential therapeutic applications in
Pancreatic Ductal Adenocarcinoma. Semin. Cancer Biol. 2015, 35,
11−19.
(20) Egan, D. F.; Chun, M. G.; Vamos, M.; Zou, H.; Rong, J.; Miller,
C. J.; Lou, H. J.; Raveendra-Panickar, D.; Yang, C. C.; Sheffler, D. J.;
Teriete, P.; Asara, J. M.; Turk, B. E.; Cosford, N. D.; Shaw, R. J. Small
molecule inhibition of the autophagy kinase ULK1 and identification
of ULK1 substrates. Mol. Cell 2015, 59, 285−297.
(21) Pasquier, B.; El-Ahmad, Y.; Filoche-Romme, B.; Dureuil, C.;
Fassy, F.; Abecassis, P. Y.; Mathieu, M.; Bertrand, T.; Benard, T.;
Barriere, C.; El Batti, S.; Letallec, J. P.; Sonnefraud, V.; Brollo, M.;
Delbarre, L.; Loyau, V.; Pilorge, F.; Bertin, L.; Richepin, P.; Arigon, J.;
Labrosse, J. R.; Clement, J.; Durand, F.; Combet, R.; Perraut, P.;
Leroy, V.; Gay, F.; Lefrancois, D.; Bretin, F.; Marquette, J. P.; Michot,
N.; Caron, A.; Castell, C.; Schio, L.; McCort, G.; Goulaouic, H.;
Garcia-Echeverria, C.; Ronan, B. Discovery of (2S)-8-[(3R)-3-
methylmorpholin-4-yl]-1-(3-methyl-2-oxobutyl)-2-(trifluoromethyl)-
3,4-dihydro-2H-pyrimido[1,2-a]pyrimidin-6-one: a novel potent and
selective inhibitor of Vps34 for the treatment of solid tumors. J. Med.
Chem. 2015, 58, 376−400.
(22) Dowdle, W. E.; Nyfeler, B.; Nagel, J.; Elling, R. A.; Liu, S.;
Triantafellow, E.; Menon, S.; Wang, Z.; Honda, A.; Pardee, G.;
Cantwell, J.; Luu, C.; Cornella-Taracido, I.; Harrington, E.; Fekkes, P.;
Lei, H.; Fang, Q.; Digan, M. E.; Burdick, D.; Powers, A. F.; Helliwell,
S. B.; D’Aquin, S.; Bastien, J.; Wang, H.; Wiederschain, D.; Kuerth, J.;
Bergman, P.; Schwalb, D.; Thomas, J.; Ugwonali, S.; Harbinski, F.;
Tallarico, J.; Wilson, C. J.; Myer, V. E.; Porter, J. A.; Bussiere, D. E.;
Finan, P. M.; Labow, M. A.; Mao, X.; Hamann, L. G.; Manning, B. D.;
Valdez, R. A.; Nicholson, T.; Schirle, M.; Knapp, M. S.; Keaney, E. P.;
Murphy, L. O. Selective VPS34 inhibitor blocks autophagy and
uncovers a role for NCOA4 in ferritin degradation and iron
homeostasis in vivo. Nat. Cell Biol. 2014, 16, 1069−1079.
(23) Honda, A.; Harrington, E.; Cornella-Taracido, I.; Furet, P.;
Knapp, M. S.; Glick, M.; Triantafellow, E.; Dowdle, W. E.;
Wiedershain, D.; Maniara, W.; Moore, C.; Finan, P. M.; Hamann, L.
G.; Firestone, B.; Murphy, L. O.; Keaney, E. P. Potent, selective, and
orally bioavailable inhibitors of VPS34 provide chemical tools to
modulate autophagy in vivo. ACS Med. Chem. Lett. 2016, 7, 72−76.
(24) Qiu, Z.; Kuhn, B.; Aebi, J.; Lin, X.; Ding, H.; Zhou, Z.; Xu, Z.;
Xu, D.; Han, L.; Liu, C.; Qiu, H.; Zhang, Y.; Haap, W.; Riemer, C.;
Stahl, M.; Qin, N.; Shen, H. C.; Tang, G. Discovery of
fluoromethylketone-based peptidomimetics as covalent ATG4B
(autophagin-1) inhibitors. ACS Med. Chem. Lett. 2016, 7, 802−806.
(10) Wang, C.; Hu, Q.; Shen, H. M. Pharmacological inhibitors of
autophagy as novel cancer therapeutic agents. Pharmacol. Res. 2016,
105, 164−175.
(11) Maycotte, P.; Aryal, S.; Cummings, C. T.; Thorburn, J.; Morgan,
M. J.; Thorburn, A. Chloroquine sensitizes breast cancer cells to
chemotherapy independent of autophagy. Autophagy 2012, 8, 200−
212.
(12) Eng, C. H.; Wang, Z.; Tkach, D.; Toral-Barza, L.; Ugwonali, S.;
Liu, S.; Fitzgerald, S. L.; George, E.; Frias, E.; Cochran, N.; De Jesus,
R.; McAllister, G.; Hoffman, G. R.; Bray, K.; Lemon, L.; Lucas, J.;
Fantin, V. R.; Abraham, R. T.; Murphy, L. O.; Nyfeler, B.
Macroautophagy is dispensable for growth of KRAS mutant tumors
and chloroquine efficacy. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 182−
187.
(13) McAfee, Q.; Zhang, Z.; Samanta, A.; Levi, S. M.; Ma, X. H.;
Piao, S.; Lynch, J. P.; Uehara, T.; Sepulveda, A. R.; Davis, L. E.;
Winkler, J. D.; Amaravadi, R. K. Autophagy inhibitor Lys05 has single-
agent antitumor activity and reproduces the phenotype of a genetic
autophagy deficiency. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 8253−
8258.
(14) Nordstrom, L. U.; Sironi, J.; Aranda, E.; Maisonet, J.; Perez-
Soler, R.; Wu, P.; Schwartz, E. L. Discovery of autophagy inhibitors
with antiproliferative activity in lung and pancreatic cancer cells. ACS
Med. Chem. Lett. 2015, 6, 134−139.
(15) Torrente, E.; Parodi, C.; Ercolani, L.; De Mei, C.; Ferrari, A.;
Scarpelli, R.; Grimaldi, B. Synthesis and in vitro anticancer activity of
the first class of dual inhibitors of REV-ERBbeta and autophagy. J.
Med. Chem. 2015, 58, 5900−5915.
F
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX