´
A. Garcıa-Granados et al. / Phytochemistry 58 (2001) 891–895
894
et al., 1991). Syrup; [ꢂ]D=+21 (CHCl3, c 1); IR ꢃmax
(CHCl3): 3444 and 1690 cmÀ1 1H NMR (CDCl3): ꢀ
Table 1
13C NMR chemical shifts for compounds 1, 4, 5, 6, 7, 8 and 9
;
0.85 and 0.88 (3H each, d, J=6.6 Hz, 3H-12 and 3H-
13), 0.98 (3H, s, 3H-14), 1.18 (3H, s, 3H-15), 2.64 (1H, s,
H-5) and 3.52 (1H, dd, J1,2b=J1,2a=3.0 Hz, H-1).
Compounds
1
4
5
6
7
8
9
C-1
C-2
213.8
33.1
39.6
69.6
63.3
215.0
57.7
25.7
33.9
53.8
26.2
21.4
18.7
19.7
29.3
73.6
25.3
33.8
70.1
57.1
218.5
58.1
26.5
35.1
45.9
26.1
21.6
18.8
19.5
30.4
213.5
33.9
39.7
69.9
57.2
214.2
80.2
32.2
28.9
53.7
31.5
17.0
16.6
19.1
29.1
213.1
32.7
39.5
69.5
63.5
217.2
60.0
24.9
33.7
53.7
71.0
28.5
26.0
19.5
29.2
213.0
33.8
39.5
69.8
58.1
216.4
79.8
29.0
29.3
52.6
74.9
25.1
24.0
19.2
29.1
73.3
25.3
32.5
70.1
57.7
221.2
60.3
25.7
34.7
46.2
71.1
28.7
26.1
19.4
30.3
73.2
24.9
32.5
69.9
56.3
214.1
64.5
69.9
45.4
40.5
25.0
20.4
19.6
19.5
30.2
4.6. Biotransformation of substrate 1 with Gliocladium
roseum
C-3
C-4
C-5
C-6
670 mg of substrate 1 were dissolved in EtOH (9 ml),
distributed between 9 Erlenmeyer flask cultures and
incubated for 5 days, after which the cultures were pro-
cessed as indicated above for the biotransformation of
substrate 1 with Exserohilum halodes. The resulting
mixture (667 mg) was chromatographed on a silica gel
column to obtain 11 mg (2%) of 4b,7a-dihydroxy-
eudesmane-1,6-dione (5); syrup; [a]D=+91ꢀ (CHCl3, c
C-7
C-8
C-9
C-10
C-11
C-12
C-13
C-14
C-15
1
1); IR ꢃmax (CHCl3): 3514 and 1701 cmÀ1; H NMR
(CDCl3): ꢀ 0.92 and 0.94 (3H each, d, J=6.8 Hz, 3H-12
and 3H-13), 1.24 and 1.25 (3H each, s, 3H-14 and 3H-
15), 3.08 (1H, ddd, J2b,2a=J2b,3a=14,3, J2b,3b=6.1 Hz,
H-2b) and 3.54 (1H, s, H-5); HRLSIMS, m/z:
[M+Na]+ 291.1565, (C15H24O4Na, 291.1572, PPM
+2.4); 190 mg (27%) of 4b,11-dihydroxyeudesmane-
1,6-dione (6) (Garcıa-Granados et al., 1993); syrup;
[a]D=+61ꢀ (CHCl3, c 1); IR ꢃmax (CHCl3): 3527 and
m/z: [M+Na]+ 293.1727, (C15H26O4Na, 293.1729,
PPM +0.7).
Acknowledgements
1700 cmÀ1 1H NMR (CDCl3): ꢀ 1.18 and 1.21 (3H
;
each, s, 3H-12 and 3H-13), 1.23 and 1.24 (3H each, s,
3H-14 and 3H-15), 2.39 (1H, dd, J7,8b=12.2, J7,8a=7.3
Hz, H-7), 2.55 (1H, s, H-5) and 3.03 (1H, ddd,
This work was financially supported by grants from
the Comision Interministerial de Ciencia y Tecnologıa
(PM98-0213) and the Consejerıa de Educacion y Cien-
cia de la Junta de Andalucıa (FQM 0139). We thank
Laura Lopez(CECT) for her assistance with the tax-
onomy of the microorganisms used in this work and
David Nesbitt for improving the use of English in the
manuscript.
J
2b,2a=J2b,3a=14.2, J2b,3b=6.0 Hz, H-2b); 20 mg (3%)
of 4b,7a,11-trihydroxyeudesmane-1,6-dione (7); syrup;
[a]D=+89ꢀ (CHCl3, c 1); IR ꢃmax (CHCl3): 3498 and
1700 cmÀ1 1H NMR (CDCl3): ꢀ 1.22 and 1.26 (3H
;
each, s, 3H-14 and 3H-15), 1.30 and 1.44 (3H each, s,
3H-12 and 3H-13), 1.70 (1H, ddd, J3a,3b=J3a,2b=14.3,
J
J
J
3a,2a=4.5 Hz, H-3a), 2.04 (1H, ddd, J3b,3a=14.3,
3b,2b=5.9, J3b,2a=2.8 Hz, H-3b), 2.15 (1H, ddd,
2a,2b=14.3, J2a,3a=4.5, J2a,3b=2.8 Hz, H-2a), 3.07
References
Amate, Y., Garcıa-Granados, A., Martınez, A., Saenzde Buruaga, A.,
Breton, J.L., Onorato, M.E., Arias, J.M., 1991. Biotransformation
of 6b-eudesmanolides functionalized at C-3 with Curvularia lunata
and Rhizopus nigricans cultures. Tetrahedron 47, 5811–5818.
Atta-ur-Rahman, Choudhary, M.I., Ata, A., Alam, M., Farooq, A.,
Perveen, S., Shekhani, M.S., 1994. Microbial transformations of 7a-
hydroxyfrullanolide. J. Nat. Prod. 57, 1251–1255.
(1H, ddd, J2b,2a=J2b,3a=14.3, J2b,3b=5.9 Hz, H-2b)
and 3.45 (1H, s, H-5); HRLSIMS, m/z: [M+Na]+
307.1527, (C15H24O5Na, 307.1521, PPM-1.9); 414 mg
(58%) of 1a,4b,11-trihydroxyeudesman-6-one (8) (Gar-
cıa-Granados et al., 1993); syrup; [ꢂ]D=+50ꢀ (CHCl3, c
1); IR ꢃmax (CHCl3): 3443 and 1684 cmÀ1; H NMR
(CDCl3): ꢀ 1.00 (3H, s, 3H-14), 1.19 (3H, s, 3H-15), 1.18
and 1.23 (3H each, s, 3H-12 and 3H-13), 2.41 (1H, ddd,
1
Becher, E., Schuep, W., Matzinger, P.K., Ehret, C., Teissiere, P.J.,
Maruyama, H., Suhara, Y., Ito, S., Ogawa, M., 1978. Hydro-
xypatchoulol and its derivatives. Ger. Offen. 2,739,449 (Cl. C07C35/
22) 23 March 1978, Brit. Appl. 76/36,397, 02 Sept 1976; pp. 67.
El-Sharkawy, S., Zaghloul, A.M., Badria, F.A., Matooq, G.T., 1996.
Biotransformation of a-santonin. Mansoura J. Pharm. 12, 99–109.
Fischer, N.H., Olivier, E.J., Fischer, H.D., 1979. The biogenesis and
chemistry of sesquiterpene lactones. In: Herz, W., Grisebach, H.,
Kirby, G.W. (Eds.), Fortschritt der Chemie organischer Natur-
stoffe, Vol. 38. Springer-Verlag, New York, pp. 47–390.
Fraga, B.M., 1997. Natural sesquiterpenoids. Nat. Prod. Rep. 14,
145–162.
J
7,8b=12.7, J7,8a=6.3, J7,5=1.1 Hz, H-7), 2.64 (1H, bs,
H-5) and 3.51 (1H, dd, J1,2b=J1,2a=2.8 Hz, H-1); and
32 mg (5%) of 1a,4b,8a-trihydroxyeudesman-6-one (9);
syrup; [a]D=+100ꢀ (CHCl3, c 1); IR ꢃmax (CHCl3):
3412 and 1690 cmÀ1; H NMR (CDCl3): ꢀ 0.96 (3H, s,
1
3H-14), 1.06 and 1.10 (3H each, d, J=7.1 Hz, 3H-12
and 3H-13), 1.22 (3H, s, 3H-15), 2.62 (1H, s, H-5), 3.55
(1H, dd, J1,2b=J1,2a=2.9 Hz, H-1b), and 4.04 (1H, ddd,
Fraga, B.M., 2000. Natural sesquiterpenoids. Nat. Prod. Rep. 17,
483–504.
J
8,9a=10.8, J8,7=10.1, J8,9b=5.0 Hz, H-8); HRLSIMS,