as being derived from states of predominantly 3MLCT [dp(Pt) →
p*(tBu3trpy)] character, mixed with some intraligand 3LLCT
[p(C≡CR) → p*(tBu3trpy)] character. Again, the red shift in
the emission bands of 2 relative to that of 1 is consistent with
the electron-donating ability of the tri-tert-butyl groups on the
terpyridyl ligands.
16661 unique reflections collected at 253 K with Mo-Ka radiation (k =
0.71073 A) equal to 2hmax = 48.84◦ on a single crystal X-ray MAR image-
˚
plate diffractometer, the structure was solved on a PC using the SIR-
97 programme and refined by full-matrix least squares methods. The
refinement converged to final R1 = 0.0553 and wR2 = 0.1491 with a
goodness-of-fit of 0.91; the largest difference peak and hole 1.812 and
−3
˚
−0.809 e A respectively.
Both the crystalline and powder solids of 1 exhibited rich
luminescent properties at 298 K and 77 K, with the 3MLCT
emissive state energy of the crystalline solid slightly lower than
that of the powder form (Fig. S3‡). This may be attributed to
the existence of a weak Pt · · · Pt interaction and little partial
p · · · p stacking as observed in its crystal lattice. However, the
emission maxima of the two forms do not vary to a large extent
as is observed in the related platinum(II)–terpyridyl complexes.7e
This may probably be attributed to the staggered arrangement
of the tri-tert-butylterpyridine units, leading to poor spatial
overlap. The solid-state emission of 2 showed emission maxima
at k > 820 nm at 298 K and 77 K. With reference to previous
spectroscopic studies on platinum(II)–terpyridyl complexes,7a–g
these low-energy emissions are assigned as originating from triplet
states of MMLCT character, associated with the presence of
Pt · · · Pt and p · · · p stacking interactions. It is likely that in the
absence of the bulky tert-butyl groups on the terpyridine unit in 2,
stronger Pt · · · Pt and p · · · p stacking interactions can exist. This,
1 (a) D. B. Amabilino and J. F. Stoddart, Chem. Rev., 1995, 95, 2725;
(b) P. Baxter, J. M. Lehn, A. Decian and J. Fischer, Angew. Chem., Int.
Ed. Engl., 1993, 32, 69; (c) D. L. Caulder and K. N. Raymond, Acc.
Chem. Res., 1999, 32, 975; (d) M. Fujita, K. Umemoto, M. Yoshizawa,
N. Fujita, T. Kusukawa and K. Biradha, Chem. Commun., 2001, 509;
(e) J. M. Lehn, Supramolecular Chemistry: Concepts and Perspectives,
Wiley-VCH, Weinheim, Germany, 1995; (f) S. Leininger, B. Olenyuk
and P. J. Stang, Chem. Rev., 2000, 100, 853; (g) T. Evan-Salem, I. Baruch,
L. Avram, Y. Cohen, L. C. Palmer and J. Rebek, Proc. Natl. Acad. Sci.
USA, 2006, 103, 12296; (h) S. M. Biros and J. Rebek, Chem. Soc. Rev.,
2007, 36, 93.
2 (a) A. F. D. de Namor, R. M. Cleverley and M. L. Zapata-Ormachea,
Chem. Rev., 1998, 98, 2495; (b) R. Ungaro, A. Arduini, A. Casnati, A.
Pochini and F. Ugozzoli, Pure Appl. Chem., 1996, 68, 1213; (c) W. Xu,
J. P. Rourke, J. J. Vittal and R. J. Puddephatt, J. Chem. Soc., Chem.
Commun., 1993, 145.
3 (a) C. D. Gutsche, Calixarenes, Royal Society of Chemistry, Cam-
bridge, UK, 1989; (b) S. Shinkai, Tetrahedron, 1993, 49, 8933;
(c) C. D. Gutsche, Calixarenes Revisited, Royal Society of Chem-
istry, Cambridge, UK, 1998; (d) Z. Asfari, V. Bohmer, J. Harrow-
field and J. Vicens, Calixarenes 2001, Kluwer, Dordrecht, Nether-
lands, 2001; (e) P. D. Harvey, Coord. Chem. Rev., 2002, 233–234,
289.
4 (a) H. S. Lo, S. K. Yip, K. M. C. Wong, N. Y. Zhu and V. W. W. Yam,
Organometallics, 2006, 25, 3537; (b) V. W. W. Yam, K. L. Cheung, L. H.
Yuan, K. M. C. Wong and K. K. Cheung, Chem. Commun., 2000, 1513;
(c) V. W. W. Yam, S. K. Yip, L. H. Yuan, K. L. Cheung, N. Y. Zhu and
K. K. Cheung, Organometallics, 2003, 22, 2630; (d) S. K. Yip, E. C. C.
Cheng, L. H. Yuan, N. Y. Zhu and V. W. W. Yam, Angew. Chem., Int.
Ed., 2004, 43, 4954.
5 (a) A. L. Balch, J. Am. Chem. Soc., 1976, 98, 8049; (b) N. S. Lewis,
K. R. Mann, J. G. Gordon and H. B. Gray, J. Am. Chem. Soc., 1976,
98, 7461; (c) C. M. Che, V. W. W. Yam, W. T. Wong and T. F. Lai, Inorg.
Chem., 1989, 28, 2908; (d) D. M. Roundhill, H. B. Gray and C. M.
Che, Acc. Chem. Res., 1989, 22, 55; (e) D. C. Smith and H. B. Gray,
Coord. Chem. Rev., 1990, 100, 169; (f) H. K. Yip, C. M. Che, Z. Y.
Zhou and T. C. W. Mak, J. Chem. Soc., Chem. Commun., 1992, 1369;
(g) H. K. Yip, L. K. Cheng, K. K. Cheung and C. M. Che, J. Chem.
Soc., Dalton Trans., 1993, 2933; (h) D. R. Striplin and G. A. Crosby,
J. Phys. Chem., 1995, 99, 7977; (i) T. V. O’Halloran, M. M. Roberts
and S. J. Lippard, J. Am. Chem. Soc., 1984, 106, 6427; (j) L. S. Hollis
and S. J. Lippard, J. Am. Chem. Soc., 1983, 105, 3494; (k) H. Kunkely
and A. Vogler, J. Am. Chem. Soc., 1990, 112, 5625; (l) S. C. F. Kui,
S. S. Y. Chui, C. M. Che and N Zhu, J. Am. Chem. Soc., 2006, 128,
8297.
t
together with the lower p* orbital energy of trpy than Bu3trpy,
would give rise to a low-energy MMLCT emission at k > 800 nm
in the solid state.
In conclusion, a new class of luminescent dinuclear platinum-
(II)–terpyridyl calix[4]arene-containing bis-alkynyl complexes has
been demonstrated to possess Pt · · · Pt and p · · · p interactions
in the solid state. An unprecedented Pt · · · Pt close contact of
˚
3.272 A was observed in the dinuclear platinum(II) calix[4]arene-
bis-alkynyl complex, representing the very first example of a
Pt · · · Pt interaction in platinum(II) complexes containing the bulky
tri-tert-butyl terpyridine ligand. This probably arises from the
unique conformational arrangement of the calix[4]arene moiety
as well as the propensity of Pt metal centres and p-aromatic
ligands for non-covalent interactions that lock the two Pt–
tBu3trpy units together. The formation of Pt · · · Pt and p · · · p
stacking interactions also provides the driving force for such a
phenomenon.
6 (a) C. K. Hui, B. W. K. Chu, N. Y. Zhu and V. W. W. Yam, Inorg. Chem.,
2002, 41, 6178; (b) K. W. Jennette, J. T. Gill, J. A Sadownick and S. J.
Lippard, J. Am. Chem. Soc., 1976, 98, 6159.
Acknowledgements
7 (a) C. Yu, K. H. Y. Chan, K. M. C. Wong and V. W. W. Yam, Proc.
Natl. Acad. Sci. USA, 2006, 103, 19652; (b) C. Yu, K. M. C. Wong,
K. H. Y. Chan and V. W. W. Yam, Angew. Chem., Int. Ed., 2005, 44, 791;
(c) A. Y. Y. Tam, K. M. C. Wong, G. Wang and V. W. W. Yam, Chem.
Commun., 2007, 2028; (d) V. W. W. Yam, K. H. Y. Chan, K. M. C.
Wong and N. Y. Zhu, Chem.–Eur. J., 2005, 11, 4535; (e) V. W. W. Yam,
K. M. C. Wong and N. Y. Zhu, J. Am. Chem. Soc., 2002, 124, 6506;
(f) V. W. W. Yam, K. H. Y. Chan, K. M. C. Wong and B. W. K. Chu,
Angew. Chem., Int. Ed., 2006, 45, 6169; (g) V. W. W. Yam, R. P. L. Tang,
K. M. C. Wong and K. K. Cheung, Organometallics, 2001, 20, 4476;
(h) V. W. W. Yam, K. M. C. Wong and N. Zhu, Angew. Chem., Int. Ed.,
2003, 42, 1400; (i) K. M. C. Wong, W. S. Tang, B. W. K. Chu, N. Zhu
and V. W. W. Yam, Organometallics, 2004, 23, 3459.
V. W.-W. Y. acknowledges support from the URC Seed Funding
for Strategic Research Theme on Organic Optoelectronics and the
Faculty Development Fund of The University of Hong Kong.
The work described in this paper has been supported by a Central
Allocation Vote (CAV) Grant from the Research Grants Council
of Hong Kong Special Administrative Region, China (Project No.
HKU 2/05C). H.-S. L. acknowledges the receipt of a postgraduate
studentship, administered by The University of Hong Kong.
8 (a) M. A. McKervey, E. M. Seward, G. Ferguson, B. Ruhl and S. J.
Harris, J. Chem. Soc., Chem. Commun., 1985, 388; (b) F. Arnaudneu,
E. M. Collins, M. Deasy, G. Ferguson, S. J. Harris, B. Kaitner,
A. J. Lough, M. A. McKervey, E. Marques, B. L. Ruhl, M. J.
Schwing-Weill and E. M. Seward, J. Am. Chem. Soc., 1989, 111,
8681.
Notes and references
§ Crystallographic data. 1: C127.5H155Cl3F6N6O15Pt2S2, Mr = 2686.23,
˚
˚
monoclinic, space group ◦P21/c, a = 26.746(5) A, b = 22.659(5) A, c =
22.886(5) A, b = 92.19(3) , V = 13860(5) A , Z = 4, qcalcd = 1.287 g cm−3
,
3
˚
˚
l(Mo-Ka) = 2.170 mm−1. 57034 reflections measured. With the use of
4388 | Dalton Trans., 2007, 4386–4389
This journal is
The Royal Society of Chemistry 2007
©