R. V. S. Nirogi et al. / Bioorg. Med. Chem. Lett. 21 (2011) 346–349
349
Vehicle (1mL/kg, p.o.) + Scopolamine (0.4 mg/k g, s.c.)
70000
60000
50000
40000
30000
Donepezil (3mg/kg, s.c.)+Scopolamine (0.4 mg/kg, s.c.)
Compound-7a (10 mg/kg, p.o.)+Scopolamine (0.4 mg/kg, s.c.)
*
*
*
*
1
2
3
4
Day
Figure 4. Effect of acute treatment of compound 7a in Morris water maze for Latency to target in rats. Data represents Mean SEM of latency to target, *p <0.05, (One Way
ANOVA, Dunnett’s post hoc analysis).
microsomes, the IC50 values for all three compounds were found to
be >25 M for 2D6, while for 3A4 it was nearly 5 M (Table 3).
References and notes
l
l
1. Hoyer, D.; Clarke, D. E.; Fozard, J. R.; Harting, P. R.; Martin, G. R.; Saxena, P. R.;
Humphrey, P. Pharmacol. Rev. 1994, 46, 157.
2. Glennon, R. A. J. Med. Chem. 2003, 46, 2795.
3. Sebben, M.; Ansanay, H.; Dumuis, A. Neuroreport 1994, 5, 2553.
4. Holenz, J.; Pauwels, P. J.; Diaz, J. L.; Merce, R.; Codony, X.; Buschmann, H. Drug
Discovery Today 2006, 11, 283.
5. Davies, S. L.; Silvestre, J. S.; Guitart, X. Drugs Future 2005, 30, 479.
6. Fisas, A.; Codony, X.; Romero, G.; Dordal, A.; Giraldo, J.; Merce, R.;
Holenz, J.; Heal, D.; Buschmann, H.; Pauwels, P. J. Br. J. Pharmacol. 2006,
148, 973.
7. Roth, B. L.; Craig, S. C.; Choudhary, M. S.; Uluer, A.; Monsma, F. J., Jr.; Shen, Y.;
Meltzer, H. Y.; Siblev, D. R. J. Pharmacol. Exp. Ther. 1994, 268, 1403.
8. Werner, J. G.; Cornelis, J. V. Curr. Top. Med. Chem. 2008, 8, 1035.
9. Reavill, C.; Rogers, D. C. Curr. Opin. Invest. Drugs 2001, 2, 104.
10. Christopher, N. J.; Mahmood, A.; Neil, D. M. Curr. Opin. Drug Discov. Dev. 2008,
11, 642.
11. Geldenhuys, W. J.; Schyf, C. V. Exp. Rev. Neurother. 2009, 9, 1073.
12. Witty, D.; Ahemad, M.; Chuang, T. T. Prog. Med. Chem. 2009, 48, 163.
13. Sleight, A. J.; Boess, F. G.; Bos, M.; Levet-Trafit, B.; Riemer, C.; Bourson, A. Br. J.
Pharmacol. 1998, 124, 556.
Compound 7a was further selected for determining its pharma-
cokinetics profiling in male Wistar rats. Compound 7a displayed
lower oral exposure with AUC 59 ng h/mL, moderate half-life (t1/
2 = 2.35 h), high clearance (2200 mL/min/kg) with large volume of
distribution (436 L/kg), which resulted in moderate bioavailability
(%F) of 8% following the oral administration of 5 mg/kg dose (Table
4). The low oral bioavailability of these compounds may be be-
cause of their poor metabolic stability in rat liver microsomes.
Compound 7a was further evaluated for its cognitive potential
in novel object recognition (NORT) paradigm and Morris water
maze. Compound 7a has shown improvement in cognitive perfor-
mance at 10 mg/kg oral dose in NORT model (Fig. 3) while in Mor-
ris water maze model, it has significantly reversed the scopolamine
induced memory deficit at 10 mg/kg ip dose, which was apparent
from lesser target latency (Fig. 4).
In summary, a novel series of 3-piperazinyl-N1-indolesulfona-
mide derivatives were designed and identified as 5-HT6 receptor
antagonist ligands. Compound 7a has shown pro-cognitive poten-
tial when tested in NORT and Morris water maze models. Most of
these derivatives are 50–100-fold selective over the other tested
receptors. High metabolism of these compounds could be one of
the reasons for low bioavailability. So the further efforts are in pro-
gress towards the prediction of metabolism sites and blocking
them with appropriate substitutions so as to improve upon the
metabolism and thereby make these molecules more bioavailable
while maintaining the affinity towards 5-HT6 receptor.
14. Boess, F. G.; Riemer, C.; Bos, M.; Bentley, J.; Bourson, A.; Sleight, A. J. Mol.
Pharmacol. 1998, 54, 577.
15. Rogers, D. C.; Hagan, J. J. Neuropsychopharmacol. 2001, 158, 114.
16. Perez, G. G. Pharmacol. Biochem. Behav. 2005, 81, 673.
17. Meneses, A. Drug News Perspect. 2001, 14, 396.
18. Marcos, B.; Chuang, T. T.; Gil-Bea, F. J.; Ramirez, M. J. Br. J. Pharmacol. 2008, 155,
434.
19. Costa, V. D. S.; Duchatelle, P.; Boulouard, M.; Dauphin, F.
Neuropsychopharmacology 2009, 34, 488.
20. Upton, N.; Chuang, T.; Hunter, A. J.; Virley, D. J. Neurotherapeutics 2008, 5, 458.
21. Robichaud, A. J. 239th ACS National Meeting and Exposition, Mar 21–25, 2010;
San Francisco, CA. MEDI-34.
22. Heal, D. J.; Smith, S. L.; Fisas, A.; Buschmann, H. Pharmacol. Ther. 2008, 117, 207.
23. Liu, K. G.; Robicchaud, A. J. Drug Dev. Res. 2009, 70, 145.
24. Rosse, G.; Schaffhauser, H. Curr. Top. Med. Chem. 2010, 10, 207.
25. Arnt, J.; Andersen, B. B.; Bymaster, F. P.; Chohen, M. P. 2nd Biennial
Schizophrenia international Research Conference (SIRS) April 10–14th, 2010;
Florence, Itlay.
Acknowledgments
26. Nirogi, R.; Kambhampati, R.; Shinde, A.; Kandikere, V.; Mudigonda, K.;
Bhyrapuneni, G.; Jayarajan, P.; Abraham, R.; Mulla S.; Jasti, V. ICAD 2009,
Vienna, Austria.
27. Nirogi, R.; Deshpande, A. Int. J. Pharm. Tech. Res. 2010, 2(3), 2090.
28. Nirogi, R.; Daulatabad, A. Bioorg. Med. Chem. Lett. 2010, 20, 4440.
29. Park, C. M.; Kim, S. O. Bioorg. Med. Chem. Lett. 2010, 20, 5221.
30. Nirogi, R. et.al. WO2004/048330.
The authors thank Analytical department and acknowledge the
support received from Mr. Venkateswarlu Jasti, CEO, Suven Life
Sciences Ltd, Hyderabad, India.
Supplementary data
31. Conway, S. C.; Gribble, G. W. Heterocycles 1990, 30, 627.
32. Su, H. C. F.; Tsou, K. C. J. Am. Chem. Soc. 1960, 82, 1187.
Supplementary data associated with this article can be found, in