8386
E. Merißsor, U. Beifuss / Tetrahedron Letters 48 (2007) 8383–8387
In summary, new Pd-mediated reductive hetero-
CO (10 bar)
6 mol % Pd(OAc)2
DMF, NEt3, 140
NO2
NO2
O
annulations have been achieved starting from N-allyl
diphenylamines and O-allylethers yielding saturated
heterocycles.
°C, 24 h
O
50%
15
17
17
Acknowledgements
CO (10 bar)
5 mol % PdCl2(PhCN)2
DMF/MeOH, NEt3, 140
We thank Dr. J. Conrad, Ms. S. Mika, Dr. R. Frank
and Ms. I. Klaiber for recording of NMR, UV and
MS spectra.
°C, 24 h
15
40%
Scheme 7. Synthesis of benzofuran 17.
References and notes
1. (a) Beifuss, U.; Tietze, M. Top. Curr. Chem. 2005, 244,
77; (b) Laursen, J. B.; Nielsen, J. Chem. Rev. 2004, 104,
1663.
Currently, we can only speculate on the mechanism of
the Pd-mediated reductive N-heteroannulation of x-
nitroalkenes with CO.28
2. see Ref. 1 and references cited therein.
3. (a) Imai, S.; Furihata, K.; Hayakawa, Y.; Noguchi, T.;
Seto, H. J. Antibiot. 1989, 47, 1196; Nakayama, O.; Yagi,
M.; Tanaka, M.; Kiyoto, S.; Okuhara, M.; Kohsaka, M.
J. Antibiot. 1989, 47, 1221; (b) Nakayama, O.; Shigematsu,
N.; Katayama, A.; Takase, S.; Kiyoto, S.; Hashimoto, M.;
Kohsaka, M. J. Antibiot. 1989, 47, 1230.
We assume that the process starts with the metal-medi-
ated deoxygenation of 4c and 15, respectively. Reaction
of the nitro group with CO would first yield A leading to
the metal-bound nitrosamine B and the formation of
CO2. Repeated insertion of CO would give the metal-
lacyclobutanone C, which in turn decomposes to yield
the metal-bound nitrene D and CO2. A formal intramo-
lecular [2+2] cycloaddition between the Pd-bound nit-
rene and the alkene would give tricycle E. The next
step involves the formation of the bicyclic intermediate
F by means of b-hydride elimination. Finally, reductive
elimination would not only deliver products 13 and 16,
respectively, but also regenerate the Pd(0) catalyst
(Scheme 8).
ꢀ
4. (a) Funayama, S.; Eda, S.; Komiyama, K.; Omura, S.;
Tokunaga, T. Tetrahedron Lett. 1989, 30, 3151; (b)
ꢀ
Omura, S.; Eda, S.; Funayama, S.; Komiyama, K.;
Takahashi, Y.; Woodruff, H. B. J. Antibiot. 1989, 47,
1037.
5. Kinoshita, Y.; Kitahara, T. Tetrahedron Lett. 1997, 38,
4993.
6. Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219,
131.
7. Challand, S. R.; Herbert, R. B.; Holliman, F. G. J. Chem.
Soc., Chem. Commun. 1970, 1423.
8. Tietze, M.; Iglesias, A.; Merisor, E.; Conrad, J.; Klaiber,
I.; Beifuss, U. Org. Lett. 2005, 7, 1549.
9. For a review see: (a) Kno¨lker, H. J. Curr. Org. Chem.
2004, 1, 309; (b) Bedford, R. B.; Cazin, C. S. J. Chem.
Commun. 2002, 2310.
10. Mohri, K.; Suzuki, K.; Usui, M.; Isobe, K.; Tsuda, Y.
Chem. Pharm. Bull. 1995, 43, 159.
11. Broggini, G.; Garanti, L.; Molteni, G.; Zecchi, G.
Synthesis 1996, 1076.
O
Pd
O
NO2
Pd(0)
CO
N
O
- CO2
X
X
A
4c
15
12. Black, D. St. C.; Rothnie, N. E. Aust. J. Chem. 1983, 36,
1141.
Pd
N
Pd O
N
O
13. Boojamra, C. G.; Burow, K. M.; Thompson, L. A.;
Ellman, J. A. J. Org. Chem. 1997, 62, 1240.
14. Murphy, J. A.; Rasheed, F.; Gastaldi, S.; Ravishanker, T.;
Lewis, N. J. Chem. Soc., Perkin Trans. 1 1997, 1549.
15. Banik, B. K.; Banik, I.; Samajdar, S.; Wilson, M.
Heterocycles 2004, 63, 283.
16. Tomlinson, M. L. J. Chem. Soc. 1939, 158.
17. Mahood, S. A.; Schaffner, P. V. L. Org. Synth. Coll. 1943,
2, 160.
CO
O
- CO2
X
X
B
D
F
C
E
H
Pd
Pd
N
N
β
-hydride
2 + 2
elimination
18. Boothroyd, S. R.; Kerr, M. A. Tetrahedron Lett. 1995, 36,
2411.
X
X
19. Banik, B. K.; Mukhopadhyay, C.; Venkatraman, M. S.;
Becker, F. F. Tetrahedron Lett. 1998, 39, 7243.
20. Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino
Reactions in Organic Synthesis; Wiley-VCH: Weinheim,
2006.
21. (a) Merißsor, E.; Conrad, J.; Klaiber, I.; Mika, S.; Beifuss,
U. Angew. Chem., Int. Ed. 2007, 46, 3353; (b) Merißsor, E.;
Conrad, J.; Klaiber, I.; Mika, S.; Beifuss, U. Synlett 2007,
2033.
PdH
N
H
N
reductive
elimination
- Pd(0)
X
X
13 X = NPh
16 X = O
Scheme 8. Possible reaction mechanism for the Pd-mediated N-
heteroannulation.
22. For a review see: So¨derberg, B. C. G. Curr. Org. Chem
2000, 4, 727.