LETTER
Stereoselective Entry to the Bicycle [4.3.0] Skeleton of Oplopanes
1007
(3) Marco, J. A.; Sanz-Cervera, J. F.; García-Lliso, V.; Domingo,
L. R.; Carda, M.; Rodríguez, S.; López-Ortiz, F.; Lex, J.
Liebigs Ann. 1995, 1837-1841.
(4) (a) García-Granados, A.; Molina, A.; Cabrera, E. Tetrahedron
1986, 42, 81-87. (b) Rodríguez, A. A. S.; García, M.; Rabi, J.
A. Phytochemistry 1978, 17, 953-954.
tionalized as arising from cleavage of the g-lactone and
allylic rearrangement, to afford the cationic intermediate
at C(4) (intermediate A, Scheme 2), which is stabilized by
the addition of water to give the allylic tertiary alcohol (in-
termediate B, Scheme 2); protonation of the primary alco-
hol triggered the transannular cyclization and pinacol
rearrangement to produce the oplopane 9. At the same
time, protonation of the primary alcohol of 6 (intermedi-
ate C), followed by dehydration, allows the transannular
cyclization, which produces the C(1)-C(5)s bond, and the
cationic center at C(4) (intermediate D) is stabilized by
the addition of water (to form 10) or by loss of a proton (to
produce 11). The pseudoenantiomeric relationship of the
endocyclic double bonds in the key intermediates (4 in
Scheme 1 and B in Scheme 2) is reflected in the enantio-
meric fusion in the bicycle [4.3.0] nonane of the products
(5 and 9).
(5) González, A. G.; Galindo, A.; Afonso, M., M.; Mansilla, H.
Heterocycles 1989, 29, 1439-1441.
(6) Wilton, J. H.; Doskotch, R. W. J. Org. Chem. 1983, 48, 4251.
(7) For recent cyclizations of sesquiterpenes, see: (a) Appendino,
G.; Jakupovic, J.; Cravotto, G.; Biavatti-Weber, M.
Tetrahedron 1997, 53, 4681-4692. (b) Appendino, G.;
Tettamanzi, P.; Gariboldi, P. J. Chem. Soc. Perkin Trans. 1,
1990, 2139-2144. (c) Piet, D. P.; Schrijvers, R.; Franssen, M.
C. R.; de Groot, A. Tetrahedron 1995, 51, 6303-6314.
Minnaard, A. J.; Wijnberg, J. B. P. A.; de Groot, A. J. Org.
Chem. 1997, 62, 7346-7350.
(8) (a) González, A. G.; Galindo, A.; Afonso, M. M.; Mansilla,
H.; López, M. Tetrahedron 1988, 44, 4585-4589. (b) Delgado,
G.; Guzmán, S.; Toscano, R. A. An. Esc. Nac. Cienc. Biol.
(Méx.) 1994, 39, 109-118. For cyclization of (Z,E)-1(10),4-
cyclodecadiene derivatives as model systems for
melampolides, see: Piet, D. P.; Willemen, H. M.; de Bruin, T.
J. M.; Franssen, M. C. R.; Wijnberg, J. B. P. A.; de Groot, A.
Tetrahedron 1997, 33, 11425-11436.
(9) (a) Toma, K.; Murae, T.; Takahashi, T. Chem. Lett. 1982, 551-
554. (b) de Pascual Teresa, J.; González, M. S.; Caballero, M.
C.; Parra, T.; Bellido, I. S. Tetrahedron Lett. 1987, 28, 821-
824. (c) Alvarez, L.; Delgado, G. J. Org. Chem. 1988, 53,
5527-5530.
(10) Delgado, G.; Alvarez, L.; Guzmán, S. Trends Org. Chem.
(India) 1995, 5, 1-10.
(11) Delgado, G.; Guzmán, S. J. Chem. Soc., Chem. Commun.
1992, 606-607.
(12) (a) Samek, Z.; Holub, M.; Bloszyk, E.; Drozdz, B. Z. Chem.
1979, 19, 449-450. (b) Rychlewska, U. J. Chem. Soc. Perkin
Trans. II, 1982, 1641-1644. (c) Delgado, G.; Hernández, H.;
Romo de Vivar, A. J. Org. Chem. 1984, 49, 2994-2997.
(13) Structure of oplopanone, see: Takeda, K.; Minato, H.;
Ishikawa, M. J. Chem. Soc., Chem. Commun. 1965, 79-81.
Synthesis of oplopanone, see: (a) Köster, F.-H.; Wolf, H.
Tetrahedron Lett. 1981, 22, 3937-3940. (b) Ho, T.-L.
Carbocycle Construction in Terpene Synthesis. VCH,
Weinheim, Germany, 1988; p 224, 226.
(14) Romo de Vivar, A.; Bratoeff, E. A.; Ontiveros, E.; Lankin, D.
C.; Bhacca, N. S. Phytochemistry 1980, 19, 1795-1797.
(15) 7: White solid mp > 275 °C, UV λmax 205 (ε 28419); IR
(CHCl3) νmax 3453, 2980, 1759, 1658, 1412, 1355, 1286, 1142,
1090, 979 cm-1; 1H NMR (CDCl3, 200 MHz): δ 9.89 (1H, br
s, H-14), 6.40 (1H, br dd, J = 12 and 4 Hz, H-1), 6.33 (1H, d,
J = 3 Hz, H-13 cis), 5.60 (1H, d, J = 3 Hz, H-13 trans), 5.03
(1H, t, J = 10 Hz, H-6), 5.05 (1H, br d, J = 10 Hz, H-5), 4.56
(1H, br d, J = 6 Hz, H-8), 1.50 (3H, br s, H-15). 13C NMR
(CDCl3, 50 MHz, APT):192.9 (C-14), 169.9 (C-12), 156.6 (C-
1), 141.5 (C-10), 138.3 (C-4 (C-11)), 138.2 (C-11 (C-4)),
127.7 (C-5), 120.3 (C-13), 74.5 (C-6), 69.8 (C-8), 53.1 (C-7),
39.2 (C-2 (C-3)), 38.5 (C-3 (C-2)), 25.0 (C-9), 16.9 (C-15);
EIMS m/z (%) 262 (M+, 25), 244 (41), 215 (61), 137 (100),
105 (92), 81 (90), 41 (80); HRMS Calculated for: C15H18O4:
262.1205; Found: 262.1208.
Scheme 2
The results show that the tertiary alcohol at C-4 and the
1(10)-trans,5(6)-trans- double bonds in the intermediate
cyclodecadiene are the structural requirements for the
oplopane formation, and that the functionalities at C-8 and
C-14 determine the preferred conformations of the inter-
mediates, to produce diastereomeric products. In summa-
ry, transannular cyclizations of germacradienes provide
alternative, efficient synthetic entries to diastereomeric
(H-4a,H-9b and H-4b,H-9a) oplopanes.
Acknowledgement
We thank the technical staff from the Instituto de Química de la
UNAM: Rocío Patiño, María Isabel Chávez, Beatriz Quiroz, Luis
Velasco and Javier Pérez-Flores for spectroscopic measurements,
and Dr. Rubén A. Toscano for X-Ray analysis of 9.
References and Notes
(16) Samek, Z.; Harmatha, J. Collect. Czech. Chem. Commun.
1978, 43, 2779-2799
(17) (a) Stewart, E.; Mabry, T. J. Phytochemistry 1985, 24, 2733-
2734. (b) Macías, F. A.; Torres, A.; Molinillo, J. M. G.;
Varela, R. M.; Castellano, D. Phytochemistry 1996, 43, 1205-
1215. (c) Delgado, G.; Tejeda, V.; Salas, A.; Chávez, M. I.;
(1) (a) Fischer, N. H. Rec. Adv. Phytochem. 1990, 24, 161-201.
(b) Fischer, N. H.; Olivier, E. J.; Fischer, H. D. Prog. Chem.
Org. Nat. Prod. 1979, 38, 47-390. (c) Coates, R. M. Prog.
Chem. Org. Nat. Prod. 1977, 36, 76-230. (d) Sutherland, J. K.
Tetrahedron 1974, 30, 1651-1660.
(2) Barrero, A. F.; Oltra, J. E.; Alvarez, M. Tetrahedron Lett.
1998, 39, 1401-1404.
Synlett 1999, S1, 1006–1008 ISSN 0936-5214 © Thieme Stuttgart · New York