Organic & Biomolecular Chemistry
Communication
915–920; (k) S. Kumar and L. Engman, J. Org. Chem., 2006, 15 (a) A. L. J. Beckwith, C. J. Easton and A. K. Serelis, J. Chem.
71, 5400–5403; (l) N. Taniguchi, J. Org. Chem., 2007, 72,
1241–1245.
3 (a) H. H. Hodgson, Chem. Rev., 1947, 40, 251–277;
(b) R. Leuckart, J. Prakt. Chem., 1890, 41, 179–224.
4 F. Mo, G. Dong, Y. Zhang and J. Wang, Org. Biomol. Chem.,
2013, 11, 1582–1593.
5 (a) J. Laquidara, Chem. Eng. News, 2001, 79, 6;
(b) H. Spencer, Chem. Brit., 1977, 13, 240.
6 Selected examples: (a) T. Zincke, Chem. Ber., 1911, 44, 769;
Soc., Chem. Commun., 1980, 482; (b) A. L. J. Beckwith,
Tetrahedron, 1981, 37, 3073; (c) A. L. J. Beckwith and
C. H. Schiesser, Tetrahedron, 1985, 41, 3925;
(d) J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734;
(e) A. Srikrishna, J. Chem. Soc., Chem. Commun., 1987, 587.
16 (a) F. Dénès, M. Pichowicz, G. Povie and P. Renaud, Chem.
Rev., 2014, 114, 2587–2693; (b) M. P. Bertrand and
C. Ferreri, in Radicals in Organic Synthesis, ed. P. Renaud
and M. P. Sibi, Wiley-VCH, Weinheim, 2001, pp. 485–504.
(b) A. Luxen and L. Christiaens, Tetrahedron Lett., 1982, 23, 17 E. H. Krenske, W. A. Pryor and K. N. Houk, J. Org. Chem.,
3905; (c) G. Petrillo, R. Novi, G. Garbarino and C. Dellerba, 2009, 74, 5356–5360.
Tetrahedron, 1986, 42, 4007–4016; (d) F. Effenberger and 18 ESI-MS spectra also documented the formation of
H. Isak, Chem. Ber., 1989, 122, 545; (e) J. A. Burns,
J. C. Butler, J. Moran and G. M. Whitesides, J. Org. Chem.,
TEMPO-CH3 and TEMPO-CD3 adducts from standard reac-
tions performed in DMSO and DMSO-d6, respectively.
1991, 56, 2648; (f) P. J. Hogg, Trends Biochem. Sci., 2003, 28, 19 Electron affinity of the acetyloxy radical: X.-B. Wang,
210; (g) M. Erlandsson and M. Hällbrink, Int. J. Pept. Res.
Ther., 2005, 11, 261; (h) O. Dmitrenko, C. Thorpe and
H.-K. Woo, L.-S. Wang, B. Minofar and P. Jungwirth,
J. Phys. Chem. A, 2006, 110, 5047–5050.
R. D. Bach, J. Org. Chem., 2007, 72, 8298; (i) D. Witt, 20 (a) A comprehensive review of radical reactions with arene-
Synthesis, 2008, 2491; ( j) D. Kundu, S. Ahammed and
C. R. Brindabad, Green Chem., 2012, 14, 2024.
7 (a) M. Majek and A. Jacobi von Wangelin, Chem. Commun.,
2013, 49, 5507–5509; (b) X. Wang, G. D. Cuny and T. Noël,
Angew. Chem., Int. Ed., 2013, 52, 7860–7864.
8 J. P. Barham, G. Coulthard, K. J. Emery, E. Doni,
F. Cumine, G. Nocera, M. P. John, L. E. A. Berlouis,
T. McGuire, T. Tuttle and J. A. Murphy, J. Am. Chem. Soc.,
2016, 138, 7402–7410.
9 (a) L. C. Schmidt, V. Rey and A. B. Penenory, Eur. J. Org.
Chem., 2006, 2210–2214; (b) M. E. Buden, J. F. Guastavino
and R. A. Rossi, Org. Lett., 2013, 15, 1174–1177;
(c) A. Dewanji, S. Murarka, D. P. Curran and A. Studer, Org.
Lett., 2013, 15, 6102–6105. For applications of NaOAc in
diazonium salts: C. Galli, Chem. Rev., 1988, 88, 765–792.
Diazotate radicals in the presence of weak carboxylate
bases: (b) R. Huisgen and G. Horeld, Ann. Chem., 1949, 562,
137; (c) R. Huisgen and H. Nakaten, Ann. Chem., 1951, 573,
181; (d) G. H. Williams, Homolytic Aromatic Substitution,
Pergamon, London, 1960; (e) T. Kauffmann, H. O. Friestad
and H. Henkler, Ann. Chem., 1960, 634, 64; (f) C. Rüchardt
and E. Merz, Tetrahedron Lett., 1964, 5, 2431;
(g) C. Rüchardt, B. Freudenberg and E. Merz, Spec. Publ.
Chem. Soc., 1965, 154; (h) J. Besse and H. Zollinger, Helv.
Chim. Acta, 1981, 64, 529; (i) R. M. Elofson, N. Cyr and
J. K. Laidler, Tetrahedron Lett., 1990, 31, 7205; ( j) S. Kindt,
K. Wicht and M. R. Heinrich, Org. Lett., 2015, 17, 6122–
6125.
radical substitution reactions, see: (d) U. M. V. Basavanag, 21 (a) This mechanism would require the deprotonation of
A. Dos Santos, L. El Kaim, R. Gamez-Montano and
L. Grimaud, Angew. Chem., Int. Ed., 2013, 52, 7194–7197;
(e) Y. Sawama, R. Nakatani, T. Imanishi, Y. Fujiwara,
Y. Monguchi and H. Sajiki, RSC Adv., 2014, 4, 8657–8660;
(f) KOAc-mediated Meerwein alkenylation: C. Molinaro,
J. Mowat, F. Gosselin, P. D. O’Shea, J.-F. Marcoux,
the intermediate arenediazohydroxide by NaOAc which is
very unlikely based on the reported pKa value of 6–8 (H2O):
E. S. Lewis and M. P. Hanson, J. Am. Chem. Soc., 1967, 89,
6268–6272; (b) For diazotates in acidic/basic water, see:
O. Macháčková and V. Štěrba, Collect. Czech. Chem.
Commun., 1972, 37, 3313–3327.
R. Angelaud and I. W. Davies, J. Org. Chem., 2007, 72, 1856– 22 (a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
1858.
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta,
F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar,
J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin,
K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador,
J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas,
10 (a) R. Francke and D. Little, Chem. Soc. Rev., 2014, 43,
2492–2521; (b) A. Studer and D. P. Curran, Angew. Chem.,
Int. Ed., 2016, 55, 58–102.
11 Base-mediated thiolations: A. Kumar, B. S. Bhakuni,
Ch. D. Prasad, S. Kumar and S. Kumar, Tetrahedron, 2013,
69, 5383–5392; N. Mukherjee, T. Chatterjee and B. C. Ranu,
J. Org. Chem., 2013, 78, 11110–11114; R.-Y. Tang, P. Zhong
and Q.-L. Lin, Synthesis, 2007, 85–91.
12 S. Shaaban, A. Jolit, D. Petkova and N. Maulide, Chem.
Commun., 2015, 51, 13902–13905.
13 K. G. Back and A. A. Thomas, Am. Ind. Hyg. Assoc. J., 1963,
24, 23–27.
14 G. Landelle, A. Panossian and F. R. Leroux, Curr. Top. Med.
Chem., 2014, 14, 941–951.
This journal is © The Royal Society of Chemistry 2016
Org. Biomol. Chem.