Organometallics
Communication
ACKNOWLEDGMENTS
■
The authors thank the University of Illinois, Urbana−
Champaign, and the Petroleum Research Fund for their
generous support.
REFERENCES
■
(1) (a) Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc.
1992, 114, 1708. (b) McGrane, P. L.; Livinghouse, T. J. Org. Chem.
1992, 57, 1323. (c) Haak, E.; Bytschkov, I.; Doye, S. Angew. Chem., Int.
Ed. 1999, 38, 3389. (d) Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc.
2001, 123, 2923. (e) Cao, C.; Ciszewski, J. T.; Odom, A. T.
Organometallics 2001, 20, 5011. (f) Tillack, A.; Castro, I. G.; Hartung,
C. G.; Beller, M. Angew. Chem., Int. Ed. 2002, 41, 2541. (g) Ong, T.-G.;
Yap, G. P. A.; Richeson, D. S. Organometallics 2002, 21, 2839.
(h) Bytschkov, T.; Doye, S. Tetrahedron Lett. 2002, 43, 3715. (i) Li, C.;
Thomson, R. K.; Gillon, B.; Patrick, B. O.; Schafer, L. L. Chem. Commun.
2003, 2462. For recent reviews see: (j) Severin, R.; Doye, S. Chem. Soc.
Rev. 2007, 36, 1407−1420. (k) Bytschkov, I.; Doye, S. Eur. J. Org. Chem.
2003, 2003, 935−946. (l) Hazari, N.; Mountford, P. Acc. Chem. Res.
2005, 38, 839−849. (m) Odom, A. L. Dalton Trans. 2005, 225−233.
(2) For other amino functionalization reactions, see: (a) Fairfax, D.;
Stein, M.; Livinghouse, T.; Jensen, M. Organometallics 1997, 16, 1523−
1525. (b) Kablaoui, N. M.; Hicks, F. A.; Buchwald, S. L. J. Am. Chem. Soc.
1996, 118, 5818−5819. Duncan, D.; Livinghouse, T. Organometallics
1999, 18, 4421−4428.
Figure 3. X-ray crystal structure of 4a. Hydrogen atoms are omitted for
clarity. Ellipsoids are drawn at the 50% probability level.
resulted in the formation of titanacycle 5 (Scheme 8). When
cyclobutyl phenyl ketone was used, an immediate color change
Scheme 8. Formation of Cyclopropane-Opened Product
(3) (a) Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118,
3182−3191. (b) Sturla, S. J.; Buchwald, S. L. Organometallics 2002, 21,
739−748.
(4) For a recent review see: Micalizio, G. C. Early Transition Metal
Mediated Reductive Coupling Reactions. In Comprehensive Organic
Synthesis II, 2nd ed.; Knochel, P., Ed.; Elsevier: Amsterdam, 2014; pp
1660−1737.
(5) Macklin, T. K.; Micalizio, G. C. Nat. Chem. 2010, 2, 638−643.
(6) Kortman, G. D.; Orr, M. J.; Hull, K. L. Organometallics 2015, 34,
1013−1016.
from green to bright red was observed. The 1H NMR spectrum
indicated consumption of starting materials and formation of an
intractable mixture of products; the C−C activation product was
not observed.
(7) (a) Ruck, R. T.; Bergman, R. G. Organometallics 2004, 23, 2231−
2233. (b) Ruck, R.; Zuckerman, R. L.; Krska, S. W.; Bergman, R. G.
Angew. Chem., Int. Ed. 2004, 43, 5372−5374. (c) Basuli, F.; Aneetha, H.;
Huffman, J. C.; Mindiola, D. J. J. Am. Chem. Soc. 2005, 127, 17992−
17993. (d) Aneetha, H.; Basuli, F.; Bollinger, J.; Huffman, J. C.;
Mindiola, D. J. Organometallics 2006, 25, 2402−2404.
(8) (a) Hanna, T. A.; Baranger, A. M.; Walsh, P. J.; Bergman, R. G. J. J.
Am. Chem. Soc. 1995, 117, 3292−3293. (b) Hanna, T. A.; Baranger, A.
M.; Bergman, R. G. J. Org. Chem. 1996, 61, 4532−4541.
(9) Vaughan, G. A.; Hillhouse, I. P. G. L.; Rheingold, A. L. J. Am. Chem.
Soc. 1990, 112, 7994−8001.
(11) Pappas, I.; Chirik, P. J. Angew. Chem., Int. Ed. 2014, 53, 6241−
6244.
In summary, aryl ketones promote facile reductive elimination
of the usually inert Cp* ligand, providing a rare example of this
reactivity in all-alkyl-substituted Cp-based ligands. Reactions
proceed with the formation of a highly reactive Ti−ketone
complex, capable of C−X activation (X = H, F, Cl, C). These
transformations proceed readily at room temperature to generate
a number of novel titanium complexes. In addition, these results
indicate potential catalyst decomposition pathways in titano-
cene-catalyzed reactions; coordination of a Lewis basic group,
e.g., a ketone, aldehyde, or imine, to the metal center could
promote the reductive elimination and thus catalyst deactivation.
(12) Meinhart, J. D.; Grubbs, R. H. Bull. Chem. Soc. Jpn. 1988, 61, 171−
180.
(13) Polse, J. L.; Andemen, R. A.; Bergman, R. G. J. Am. Chem. Soc.
1995, 117, 5393−5394.
(14) Carney, M. J.; Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am.
Chem. Soc. 1989, 111, 8751−8753.
(15) (a) Rosenthal, U.; Lefeber, C.; Arndt, P.; Tillack, A.; Baumann,
W.; Kempe, R.; Burlakov, V. V. J. Organomet. Chem. 1995, 503, 221−
223. (b) Tillack, A.; Baumann, W.; Ohff, A.; Lefeber, C.; Spannenberg,
A.; Kempe, R.; Rosenthal, U. J. Organomet. Chem. 1996, 520, 187−193.
(16) (a) Doxsee, K. M.; Mouser, J. K. M. Organometallics 1990, 9,
3012−3014. (b) Doxsee, K. M.; Mouser, J. K. M. Tetrahedron Lett. 1991,
32, 1687−1690. (c) Pappas, I.; Chirik, P. J. Polyhedron 2014, 84, 67−73.
(17) Burk, M. J.; Staley, D. L.; Tumas, W. J. Chem. Soc., Chem. Commun.
1990, 11, 809.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures, characterization data, and
crystallographic data (PDF)
Crystallographic data for 2a, 3, and 4a (CIF)
AUTHOR INFORMATION
■
Corresponding Author
(18) Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149−4152.
(19) Bailey, B. C.; Huffman, J. C.; Mindiola, D. J. J. Am. Chem. Soc.
2007, 129, 5302−5303.
Notes
The authors declare no competing financial interest.
D
Organometallics XXXX, XXX, XXX−XXX