ORGANIC
LETTERS
2000
Vol. 2, No. 3
331-333
Oxidative Photodecarboxylation of
r-Hydroxycarboxylic Acids and
Phenylacetic Acid Derivatives with
FSM-16
,†
Akichika Itoh,† Tomohiro Kodama,† Shinji Inagaki,‡ and Yukio Masaki*
Gifu Pharmaceutical UniVersity, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan, and
Toyota Central R & D labs., Inc., Aichi, 480-1192, Japan
Received November 29, 1999
ABSTRACT
FSM-16, a mesoporous silica, was found to catalyze oxidative photodecarboxylation of r-hydroxy carboxylic acid and phenyl acetic acid
derivatives to afford the corresponding carbonyl compounds. Furthermore, FSM-16 proved to be reuseable by recalcination at 450 °C after the
reaction.
Recently, the importance of environmentally friendly pro-
cesses has been recognized over all fields of industry and,
needless to say, in the field of synthetic organic chemistry
as well. Photoreaction is a promising process in this context.1
Especially, the development of photocatalysts is a subject
that is now receiving much attention. TiO2, which catalyzes
oxidation of NOx and reduction of CO2,2 is one example of
a practical and useful photocatalyst. The photoreactivity of
microporous silicas,3 which contain transition metals, also
has been studied by many groups;4 however, little is known
about the silica itself.5 A similar trend appears for mesopo-
rous silicas,3 where there is only one report on the photo-
reactivity of the silica itself,6 and there are no reports
regarding the application of mesoporous silicas to synthetic
organic chemistry, so far. In the course of our investigation
on the application of mesoporous silicas to synthetic
chemistry, we have found that benzylic acid (1) was
oxidatively decarboxylated under irradiation to give ben-
zophenone (2) in the presence of FSM-16, which is a
mesoporous silica developed by Inagaki,7 and possesses high
(5) Yoshida, H.; Tanaka, T.; Matsuo, S.; Funabiki, T.; Yoshida, S. J.
Chem. Soc., Chem. Commun. 1995, 761. Ogata, A.; Kazusaka, A.; Enyo,
M. J. Phys. Chem. 1986, 90, 5201. Anpo, M.; Yun, C.; Kubokawa, Y. J.
Catal. 1980, 61, 267. Morikawa, A.; Hattori, M.; Yagi, K.; Otsuka, K. Z.
Phys. Chem., N. F. 1977, 104, 309.
(6) Yoshida, H.; Kimura, K.; Inaki, Y.; Hattori, T. Chem. Commun. 1997,
129.
(7) Inagaki, S.; Koiwai, A.; Suzuki, N.; Fukushima, Y.; Kuroda, K. Bull.
Chem. Soc. Jpn. 1996, 69, 1449. Inagaki, S.; Fukushima, Y.; Kuroda, K. J.
Chem. Soc., Chem. Commun. 1993, 680.
† Gifu Pharmaceutical University
‡ Toyota Central R & D labs., Inc.
(1) CRC Handbook of Organic Photochemistry and Photobiology;
Horspool, W. M., Song, P.-S. Ed.; CRC Press: Boca Raton, 1995.
(2) Liu, B. J.; Torimoto, T.; Matsumoto, H.; Yoneyama, H. J. Photochem.
Photobiol. 1997, 108, 187. Inoue, T.; Fujishima, A.; Konishi, S.; Honda,
K. Nature 1979, 277, 637.
(3) IUPAC recommends a classification of pore to micropore (D < 2
nm; D, pore diameter) and mesopore (2 nm < D < 50 nm), see: IUPAC
Manual of Symbols and Terminology, appendix 2, Part 1, Colloid and
Surface Chemistry. Pure Appl. Chem. 1972, 31, 578.
(4) Anpo, M.; Yamashita, H. Surface Photochemistry; Anpo, M., Ed.;
John Wiley & Sons: London, 1996.
(8) Yamamoto, T.; Tanaka, T.; Funabiki, T.; Yoshida, S. J. Phys. Chem.
B 1998, 102, 5830. Yamamoto, T.; Tanaka, T.; Inagaki, S.; Funabiki, T.;
Yoshida, S. J. Phys. Chem. B 1999, 103, 6450.
(9) Kresge, C. T.; Lenowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J.
S. Nature 1992, 359, 710. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Lenowicz,
M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard,
E. W.; McCullen, S. B.; Higgis, J. B.; Schlenker, J. L. J. Am. Chem. Soc.
1992, 114, 10834.
(10) Zhang, W.; Fro¨ba, M.; Wang, J.; Tanev, P. T.; Pinnavaia, T. J. J.
Am. Chem. Soc. 1996, 118, 9164. Tanev, P. T.; Chibwe, M.; Pinnavaia, T.
J. Nature 1994, 368, 321.
10.1021/ol991284z CCC: $19.00 © 2000 American Chemical Society
Published on Web 01/11/2000