Chemistry - A European Journal
10.1002/chem.201605672
COMMUNICATION
[
23]
bond cleavage. The experimental result from the reaction of 1
with O and the methoxy derivative of α-hydroxy ketone strongly
supports the role of hydroxy group. In analogy to the "peroxo-
TKP acknowledges the Indian National Science Academy for the
financial support (Young Scientist Project). SB thanks DST
(INSPIRE) and RR thanks CSIR for research fellowships.
2
[
23]
hemiacetal" intermediate observed in CYP17A1,
an iron(II)-
alkylperoxo species (II) is thus proposed to form upon
nucleophilic iron(II)-hydroperoxide to the electrophilic carbonyl
carbon of α-hydroxy ketone. Intermediate II further undergoes C-
C bond cleavage to yield an iron(II)-benzoate-hydroxide species
Keywords: iron • dioxygen • nucleophilic oxidant • C-C bond
cleavage • α-hydroxy ketone
[
[
1]
2]
S. Fetzner, Appl. Environ. Microbiol. 2012, 78, 2505.
C. J. Allpress, L. M. Berreau, Coord. Chem. Rev. 2013, 257, 3005.
M. Akhtar, J. N. Wright, P. Lee-Robichaud, J. Steroid. Biochem. Mol.
Biol. 2011, 125, 2.
(
III) and ketone. For benzoin-type substrates, the minor pathway
involves the above mechanism. The major pathway, which forms
two equivalents of carboxylic acid with incorporation of oxygen
atom from water, involves the formation of iron(II)-α-hydroxy
ketone complex after replacing the hydroperoxide group of
intermediate I (Scheme S1). Benzoin is likely to undergo
enolization and subsequent formation of a planar chelate ring at
the iron(II) center is a driving force to replace hydroperoxide.
[3]
[4]
T. D. H. Bugg, C. J. Winfield, Nat. Prod. Rep. 1998, 5, 513.
M. Costas, M. P. Mehn, M. P. Jensen, L. Que, Jr., Chem. Rev. 2004,
[
5]
104, 939.
[
[
[
[
6]
7]
8]
9]
T. D. H. Bugg, S. Ramaswamy, Curr. Opin. Chem. Biol. 2008, 12, 134.
E. G. Kovaleva, J. D. Lipscomb, Nat. Chem. Biol. 2008, 4, 186.
D. Buongiorno, G. D. Straganz, Coord. Chem. Rev. 2013, 257, 541.
G. D. Straganz, B. Nidetzky, ChemBioChem 2006, 7, 1536.
2
Detection of hydrogen peroxide in the reaction of 1 and O with
benzoin supports this hypothesis (Experimental section, SI). The
substrate coordinated species (II') then reacts with dioxygen to
afford the cleavage products following a mechanism (Scheme
[10] D. J. Hopper, Biochem. J. 1986, 239, 469.
[11] J. Guo, P. Erskine, A. R. Coker, J. Gor, S. J. Perkins, S. P. Wood, J. B.
Cooper, Acta Cryst. 2015, F71, 1258.
[
26]
[
[
12] S. Nakajin, P. F. Hall, J. Biol. Chem. 1981, 256, 3871.
13] H. J. Barnes, M. P. Arlotto, M. R. Waterman, Proc. Natl. Acad. Sci. U. S.
A. 1991, 88, 5597.
S1) similar to that reported recently by us.
The resulting
iron(II)-benzoate product rapidly gets oxidized to form iron(III)-
phenolate-benzoate complex. The above mechanism explains
the formation of two equivalents of carboxylic acid as well as the
formation of diketone.
[
14] M. K. Akhtar, S. L. Kelly, M. A. Kaderbhai, J. Endocrinol. 2005, 187,
267.
[
[
15] P. F. Hall, J. Steroid. Mol. Biol. 1991, 40, 527.
16] R. Keegan, A. Lebedev, P. Erskine, J. Guo, S. P. Wood, D. J. Hopper,
S. E. J. Rigby, J. B. Cooper, Acta Cryst. 2014, D70, 2444.
17] D. L. Corina, S. L. Miller, J. N. Wright, M. Akhtar, J. Chem. Soc., Chem.
Commun. 1991, 782.
In conclusion, the reactivity of a nucleophilic iron-oxygen
oxidant from an iron(II)-benzilate complex toward different -
hydroxy ketones has been investigated. Hammett analysis and
interception studies with external substrates suggest formation
of a putative iron(II)-hydroperoxide species. The oxidant cleaves
the aliphatic C-C bonds of α-hydroxy ketones to afford carboxylic
acids and ketones. Isotope labeling studies establish that that
one of the oxygen atoms from dioxygen is incorporated into
carboxylic acid. Furthermore, the iron(II) complex cleaves the
C17-C20 bond of 17-α-hydroxyprogesterone affording
androstenedione and acetic acid. Although the coordination
environment and spin state of iron-oxygen oxidant are different
than those in heme systems, the iron complex discussed here
shows reactive similarities to the lyase activity of cytochrome
P450 17A1 (CYP17A1). Additionally, this work demonstrates
[
[
18] P. Robichaud, J. N. Wright, M. Akhtar, J. Chem. Soc., Chem. Commun.
1994, 1501.
[19] M. Akhtar, D. Corina, S. Miller, A. Z. Shyadehi, J. N. Wright,
Biochemistry 1994, 33, 4410.
[
20] P. S. Pallan, L. D. Nagy, L. Lei, E. Gonzalez, V. M. Kramlinger, C. M.
Azumaya, Z. Wawrzak, M. R. Waterman, F. P. Guengerich, M. Egli, J.
Biol. Chem. 2015, 290, 3248.
[
[
21] M. C. Gregory, I. G. Denisov, Y. V. Grinkova, Y. Khatri, S. G. Sligar, J.
Am. Chem. Soc. 2013, 135, 16245.
22] F. K. Yoshimoto, E. Gonzalez, R. J. Auchus, F. P. Guengerich, J. Biol.
Chem. 2016, 291, 17143.
[23] P. J. Mak, M. C. Gregory, I. G. Denisov, S. G. Sligar, J. R. Kincaid,
Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 15856.
[
[
[
[
24] M. Sallmann, C. Limberg, Acc. Chem. Res. 2015, 48, 2734.
2
that the O -dependent aliphatic C-C bond cleavage pathway
depends on the nature of substrate.
25] S. Paria, P. Halder, T. K. Paine, Angew. Chem. Int. Ed. 2012, 51, 6195.
26] R. Rahaman, S. Paria, T. K. Paine, Inorg. Chem. 2015, 54, 10576.
27] S. Paria, L. Que, Jr., T. K. Paine, Angew. Chem. Int. Ed. 2011, 50,
11129.
Acknowledgements
[28] S. Paria, S. Chatterjee, T. K. Paine, Inorg. Chem. 2014, 53, 2810.
[
[
29] S. Chatterjee, T. K. Paine, Angew. Chem. Int. Ed. 2015, 54, 9338.
30] S. Chatterjee, T. K. Paine, Angew. Chem. Int. Ed. 2016, 55, 7717.
This article is protected by copyright. All rights reserved.